18,984 research outputs found

    Spin-independent v-representability of Wigner crystal oscillations in one-dimensional Hubbard chains: The role of spin-charge separation

    Full text link
    Electrons in one-dimension display the unusual property of separating their spin and charge into two independent entities: The first, which derive from uncharged spin-1/2 electrons, can travel at different velocities when compared with the second, built from charged spinless electrons. Predicted theoretically in the early sixties, the spin-charge separation has attracted renewed attention since the first evidences of experimental observation, with usual mentions as a possible explanation for high-temperature superconductivity. In one-dimensional (1D) model systems, the spin-charge separation leads the frequencies of Friedel oscillations to suffer a 2k_F -- 4k_F crossover, mainly when dealing with strong correlations, where they are referred to as Wigner crystal oscillations. In non-magnetized systems, the current density functionals which are applied to the 1D Hubbard model are not seen to reproduce this crossover, referring to a more fundamental question: Are the Wigner crystal oscillations in 1D systems non-interacting v-representable? Or, is there a spin-independent Kohn-Sham potential which is able to yield spin-charge separation? Finding an appropriate answer to both questions is our main task here. By means of exact and DMRG solutions, as well as, a new approach of exchange-correlation potential, we show the answer to be positive. Specifically, the v-representable 4k_F oscillations emerge from attractive interactions mediated by positively charged spinless holes -- the holons -- as an additional contribution to the repulsive on-site Hubbard interaction

    A theorem regarding families of topologically non-trivial fermionic systems

    Full text link
    We introduce a Hamiltonian for fermions on a lattice and prove a theorem regarding its topological properties. We identify the topological criterion as a Z2\mathbb{Z}_2- topological invariant p(k)p(\textbf{k}) (the Pfaffian polynomial). The topological invariant is not only the first Chern number, but also the sign of the Pfaffian polynomial coming from a notion of duality. Such Hamiltonian can describe non-trivial Chern insulators, single band superconductors or multiorbital superconductors. The topological features of these families are completely determined as a consequence of our theorem. Some specific model examples are explicitly worked out, with the computation of different possible topological invariants.Comment: 6 page

    The slimming effect of advection on black-hole accretion flows

    Full text link
    At super-Eddington rates accretion flows onto black holes have been described as slim (aspect ratio H/R1H/R \lesssim 1) or thick (H/R >1) discs, also known as tori or (Polish) doughnuts. The relation between the two descriptions has never been established, but it was commonly believed that at sufficiently high accretion rates slim discs inflate, becoming thick. We wish to establish under what conditions slim accretion flows become thick. We use analytical equations, numerical 1+1 schemes, and numerical radiative MHD codes to describe and compare various accretion flow models at very high accretion rates.We find that the dominant effect of advection at high accretion rates precludes slim discs becoming thick. At super-Eddington rates accretion flows around black holes can always be considered slim rather than thick.Comment: 8 pages, 5 figures. Astronomy & Astrophysics, in pres
    corecore