16 research outputs found

    Deep Conservative Policy Iteration

    Full text link
    Conservative Policy Iteration (CPI) is a founding algorithm of Approximate Dynamic Programming (ADP). Its core principle is to stabilize greediness through stochastic mixtures of consecutive policies. It comes with strong theoretical guarantees, and inspired approaches in deep Reinforcement Learning (RL). However, CPI itself has rarely been implemented, never with neural networks, and only experimented on toy problems. In this paper, we show how CPI can be practically combined with deep RL with discrete actions. We also introduce adaptive mixture rates inspired by the theory. We experiment thoroughly the resulting algorithm on the simple Cartpole problem, and validate the proposed method on a representative subset of Atari games. Overall, this work suggests that revisiting classic ADP may lead to improved and more stable deep RL algorithms.Comment: AAAI 2020 (long version

    Munchausen Reinforcement Learning

    Full text link
    Bootstrapping is a core mechanism in Reinforcement Learning (RL). Most algorithms, based on temporal differences, replace the true value of a transiting state by their current estimate of this value. Yet, another estimate could be leveraged to bootstrap RL: the current policy. Our core contribution stands in a very simple idea: adding the scaled log-policy to the immediate reward. We show that slightly modifying Deep Q-Network (DQN) in that way provides an agent that is competitive with distributional methods on Atari games, without making use of distributional RL, n-step returns or prioritized replay. To demonstrate the versatility of this idea, we also use it together with an Implicit Quantile Network (IQN). The resulting agent outperforms Rainbow on Atari, installing a new State of the Art with very little modifications to the original algorithm. To add to this empirical study, we provide strong theoretical insights on what happens under the hood -- implicit Kullback-Leibler regularization and increase of the action-gap.Comment: NeurIPS 2020. Code: https://github.com/google-research/google-research/tree/master/munchausen_r

    Momentum in Reinforcement Learning

    Get PDF
    We adapt the optimization's concept of momentum to reinforcement learning. Seeing the state-action value functions as an analog to the gradients in optimization, we interpret momentum as an average of consecutive qq-functions. We derive Momentum Value Iteration (MoVI), a variation of Value Iteration that incorporates this momentum idea. Our analysis shows that this allows MoVI to average errors over successive iterations. We show that the proposed approach can be readily extended to deep learning. Specifically, we propose a simple improvement on DQN based on MoVI, and experiment it on Atari games.Comment: AISTATS 202

    Offline Reinforcement Learning with Pseudometric Learning

    Full text link
    Offline Reinforcement Learning methods seek to learn a policy from logged transitions of an environment, without any interaction. In the presence of function approximation, and under the assumption of limited coverage of the state-action space of the environment, it is necessary to enforce the policy to visit state-action pairs close to the support of logged transitions. In this work, we propose an iterative procedure to learn a pseudometric (closely related to bisimulation metrics) from logged transitions, and use it to define this notion of closeness. We show its convergence and extend it to the function approximation setting. We then use this pseudometric to define a new lookup based bonus in an actor-critic algorithm: PLOFF. This bonus encourages the actor to stay close, in terms of the defined pseudometric, to the support of logged transitions. Finally, we evaluate the method on hand manipulation and locomotion tasks.Comment: ICML 202

    GKD: Generalized Knowledge Distillation for Auto-regressive Sequence Models

    Full text link
    Knowledge distillation is commonly used for compressing neural networks to reduce their inference cost and memory footprint. However, current distillation methods for auto-regressive models, such as generative language models (LMs), suffer from two key issues: (1) distribution mismatch between output sequences during training and the sequences generated by the student during its deployment, and (2) model under-specification, where the student model may not be expressive enough to fit the teacher's distribution. To address these issues, we propose Generalized Knowledge Distillation (GKD). GKD mitigates distribution mismatch by sampling output sequences from the student during training. Furthermore, GKD handles model under-specification by optimizing alternative divergences, such as reverse KL, that focus on generating samples from the student that are likely under the teacher's distribution. We demonstrate that GKD outperforms commonly-used approaches for distilling LLMs on summarization, machine translation, and arithmetic reasoning tasks.Comment: First two authors contributed equall

    Momentum in Reinforcement Learning

    Get PDF
    International audienceWe adapt the optimization's concept of momentum to reinforcement learning. Seeing the state-action value functions as an analog to the gradients in optimization, we interpret momentum as an average of consecutive q-functions. We derive Momentum Value Iteration (MoVI), a variation of Value iteration that incorporates this momentum idea. Our analysis shows that this allows MoVI to average errors over successive iterations. We show that the proposed approach can be readily extended to deep learning. Specifically,we propose a simple improvement on DQN based on MoVI, and experiment it on Atari games

    Offline Reinforcement Learning as Anti-Exploration

    Full text link
    Offline Reinforcement Learning (RL) aims at learning an optimal control from a fixed dataset, without interactions with the system. An agent in this setting should avoid selecting actions whose consequences cannot be predicted from the data. This is the converse of exploration in RL, which favors such actions. We thus take inspiration from the literature on bonus-based exploration to design a new offline RL agent. The core idea is to subtract a prediction-based exploration bonus from the reward, instead of adding it for exploration. This allows the policy to stay close to the support of the dataset. We connect this approach to a more common regularization of the learned policy towards the data. Instantiated with a bonus based on the prediction error of a variational autoencoder, we show that our agent is competitive with the state of the art on a set of continuous control locomotion and manipulation tasks

    Leverage the Average: an Analysis of KL Regularization in Reinforcement Learning

    Get PDF
    International audienceRecent Reinforcement Learning (RL) algorithms making use of Kullback-Leibler (KL) regularization as a core component have shown outstanding performance. Yet, only little is understood theoretically about why KL regularization helps, so far. We study KL regularization within an approximate value iteration scheme and show that it implicitly averages q-values. Leveraging this insight, we provide a very strong performance bound, the very first to combine two desirable aspects: a linear dependency to the horizon (instead of quadratic) and an error propagation term involving an averaging effect of the estimation errors (instead of an accumulation effect). We also study the more general case of an additional entropy regularizer. The resulting abstract scheme encompasses many existing RL algorithms. Some of our assumptions do not hold with neural networks, so we complement this theoretical analysis with an extensive empirical study
    corecore