98 research outputs found

    Complete and selective recovery of lithium from EV lithium-ion batteries: Modeling and optimization using oxalic acid as a leaching agent

    Get PDF
    The necessity of a feasible process for the recycling of lithium-ion batteries is nowadays evident due to the significant demand for raw materials for battery production, but also due to legislative requirements to achieve certain recycling efficiency with sufficient quality of the products. Special conditions to achieve high lithium recovery and its use in new batteries represent a challenge for a commercial hydrometallurgical approach. In this work, an early selective recovery of lithium using oxalic acid as a leaching agent is investigated. The different solubility of transition metals oxalates in comparison to lithium oxalate was the main driving force to achieve selective separation in the leaching step. Nickel, cobalt, and manganese oxalates are insoluble and remained in the solid residue, while lithium oxalate was dissolved in the solution. Using a design of experiments to optimize the operation, optimal parameters were identified as 60 \ub0C, 60 min, 0.6 M oxalic acid, resulting in 98.8% leaching yield for lithium, while less than 0.5 % of cobalt and nickel, and 1.5% of manganese were leached. This can significantly improve the lithium recovery in the current recycling processes. Moreover, aluminum was completely dissolved, which is a phenomenon not reported previously. It would constitute an advantage to the subsequent recycling operations

    Intensification of lithium carbonation in the thermal treatment of spent EV Li-ion batteries via waste utilization and selective recovery by water leaching

    Get PDF
    The recycling of lithium-ion batteries remains an essential question, the recovery of lithium is a central matter since the European Commission identified it as a critical raw material. This article proposes a more effective technology in which lithium will be recovered as lithium carbonate earlier in the recycling process using thermal pre-treatment and water leaching. Two thermal treatments are compared: incineration and pyrolysis, the whole cell (cathode, anode, current collector foils, and separator) is thermally treated in a first route, while the separator is removed, in a second route. The separator\u27s presence showed a significant positive effect on the recovery, with an optimal recovery of 62% after pyrolysis at 700\ub0C for 1 h and water leaching at 25\ub0C with a solid-liquid ratio of 1:50 g/ml. Under these conditions, the solution purity was 92%, and aluminum was leached together with lithium. After evaporation, lithium carbonate and fluoride are found in the residue

    Translating Evidence from Clonal Hematopoiesis to Cardiovascular Disease: A Systematic Review

    Get PDF
    Some random mutations can confer a selective advantage to a hematopoietic stem cell. As a result, mutated hematopoietic stem cells can give rise to a significant proportion of mutated clones of blood cells. This event is known as “clonal hematopoiesis.” Clonal hematopoiesis is closely associated with age, and carriers show an increased risk of developing blood cancers. Clonal hematopoiesis of indeterminate potential is defined by the presence of clones carrying a mutation associated with a blood neoplasm without obvious hematological malignancies. Unexpectedly, in recent years, it has emerged that clonal hematopoiesis of indeterminate potential carriers also have an increased risk of developing cardiovascular disease. Mechanisms linking clonal hematopoiesis of indeterminate potential to cardiovascular disease are only partially known. Findings in animal models indicate that clonal hematopoiesis of indeterminate potential-related mutations amplify inflammatory responses. Consistently, clinical studies have revealed that clonal hematopoiesis of indeterminate potential carriers display increased levels of inflammatory markers. In this review, we describe progress in our understanding of clonal hematopoiesis in the context of cancer, and we discuss the most recent findings linking clonal hematopoiesis of indeterminate potential and cardiovascular diseases

    Farm efficiency related to animal welfare performance and management of sheep farms in marginal areas of Central Italy: a two-stage DEA model

    Get PDF
    The development of specific actions to increase animal health and welfare is indicated as a strategy to improve the efficiency and sustainability of many livestock systems, including sheep farming. In this paper, efficiency measures are provided to confirm the hypothesis that farms that are higher-performing in terms of animal welfare and management are also more technically efficient. A two-stage Data Envelopment Analysis (DEA) approach was adopted with the following twofold objectives: 1) to evaluate the efficiency and super-efficiency of 76 meat-producing sheep farms situated in marginal lands in central Italy, through DEA and Super-DEA (S-DEA) models; and 2) to assess the influence of animal welfare and management indicators on technical efficiency values through the application of a Tobit regression model. An overall efficiency performance varying within a range of 0.44–1 was estimated, with an average value of 0.80, implying a potential increase of 20% in terms of output production from both management and scale improvements. The ‘pure’ technical inefficiency was found to contribute three times more than scale inefficiency in determining the overall technical inefficiency. Adopting a more extensive farming system and increasing replacement rate were found to affect negatively the efficiency scores. On the other hand, having less than 5% of animals with body condition score beyond acceptable limits, presence of access control structures, well managed lambing pens, and dedicated feed stocking areas resulted in a positive influence on efficiency. Improvements in animal welfare aspects did not appear to be farm-scale-dependent.Highlights DEA and Super-DEA models were applied to assess sheep farm technical efficiency in Central Italy. An overall potential 20% increase in output production was estimated. Animal welfare factors were found to significantly affect efficiency performance

    Fermentation of Vaccinium floribundum Berries with Lactiplantibacillus plantarum Reduces Oxidative Stress in Endothelial Cells and Modulates Macrophages Function

    Get PDF
    Accumulating evidence suggests that high consumption of natural antioxidants promotes health by reducing oxidative stress and, thus, the risk of developing cardiovascular diseases. Similarly, fermentation of natural compounds with lactic acid bacteria (LAB), such as Lactiplantibacillus plantarum, enhances their beneficial properties as regulators of the immune, digestive, and cardiovascular system. We investigated the effects of fermentation with Lactiplantibacillus plantarum on the antioxidant and immunomodulatory effects of Pushgay berries (Vaccinium floribundum, Ericaceae family) in human umbilical vein endothelial cells (HUVECs) and macrophage cell line RAW264.7. Polyphenol content was assayed by Folin-Ciocalteu and HPLC-MS/MS analysis. The effects of berries solutions on cell viability or proliferation were assessed by WST8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt and Lactate dehydrogenase (LDH) release, Trypan blue exclusion test, and Alamar blue assay. Antioxidant activity was evaluated by a cell-based chemiluminescent probe for the detection of intracellular H2O2 production in HUVECs. Heme oxygenase-1 (HO-1) expression levels were investigated by RT-qPCR. Glutathione reductase (GR), glutathione peroxidase (Gpx), superoxide dismutase (SOD), and catalase (CAT) activities, as markers of intracellular antioxidant defense, were evaluated by spectrophotometric analysis. The immunomodulatory activity was examined in RAW 264.7 by quantification of inducible nitric oxide synthase (iNOS) and Tumor Necrosis Factor-alpha (TNF alpha) by RT-qPCR. Data showed that fermentation of Pushgay berries (i) enhances the content of quercetin aglycone, and (ii) increases their intracellular antioxidant activity, as indicated by the reduction in H2O2-induced cell death and the decrease in H2O2-induced HO-1 gene expression in HUVECs treated for 24 h with fermented berries solution (10 mu g/mL). Moreover, treatment with Pushgay berries for 72 h (10 mu g/mL) promotes cells growth in RAW 264.7, and only fermented Pushgay berries increase the expression of iNOS in the same cell line. Taken together, our results show that LAB fermentation of Pushgay berries enhances their antioxidant and immunomodulatory properties

    Kafka 'Writing as a Form of Prayer': Apocalypse Redemption and Messianism in Kafka

    No full text
    Luke Viecelihttp://trove.nla.gov.au/work/1938276

    COVID-19 in the heart and the lungs: could we “Notch” the inflammatory storm?

    Get PDF
    From January 2020, coronavirus disease (COVID-19) originated in China has spread around the world. The disease is caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The presence of myocarditis, cardiac arrest, and acute heart failure in COVID-19 patients suggests the existence of a relationship between SARS-CoV-2 infection and cardiac disease. The Notch signalling is a major regulator of cardiovascular function and it is also implicated in several biological processes mediating viral infections. In this report we discuss the possibility to target Notch signalling to prevent SARS-CoV-2 infection and interfere with the progression of COVID-19- associated heart and lungs disease

    COX-2 is downregulated in human stenotic aortic valves and its inhibition promotes dystrophic calcification

    Get PDF
    Calcific aortic valve disease (CAVD) is the result of maladaptive fibrocalcific processes leading to a progressive thickening and stiffening of aortic valve (AV) leaflets. CAVD is the most common cause of aortic stenosis (AS). At present, there is no effective pharmacotherapy in reducing CAVD progression; when CAVD becomes symptomatic it can only be treated with valve replacement. Inflammation has a key role in AV pathological remodeling; hence, anti-inflammatory therapy has been proposed as a strategy to prevent CAVD. Cyclooxygenase 2 (COX-2) is a key mediator of the inflammation and it is the target of widely used anti-inflammatory drugs. COX-2-inhibitor celecoxib was initially shown to reduce AV calcification in a murine model. However, in contrast to these findings, a recent retrospective clinical analysis found an association between AS and celecoxib use. In the present study, we investigated whether variations in COX-2 expression levels in human AVs may be linked to CAVD. We extracted total RNA from surgically explanted AVs from patients without CAVD or with CAVD. We found that COX-2 mRNA was higher in non-calcific AVs compared to calcific AVs (0.013 ± 0.002 vs. 0.006 ± 0.0004; p < 0.0001). Moreover, we isolated human aortic valve interstitial cells (AVICs) from AVs and found that COX-2 expression is decreased in AVICs from calcific valves compared to AVICs from non-calcific AVs. Furthermore, we observed that COX-2 inhibition with celecoxib induces AVICs trans-differentiation towards a myofibroblast phenotype, and increases the levels of TGF-β-induced apoptosis, both processes able to promote the formation of calcific nodules. We conclude that reduced COX-2 expression is a characteristic of human AVICs prone to calcification and that COX-2 inhibition may promote aortic valve calcification. Our findings support the notion that celecoxib may facilitate CAVD progression
    corecore