19 research outputs found

    The art of cellular communication: tunneling nanotubes bridge the divide

    Get PDF
    The ability of cells to receive, process, and respond to information is essential for a variety of biological processes. This is true for the simplest single cell entity as it is for the highly specialized cells of multicellular organisms. In the latter, most cells do not exist as independent units, but are organized into specialized tissues. Within these functional assemblies, cells communicate with each other in different ways to coordinate physiological processes. Recently, a new type of cell-to-cell communication was discovered, based on de novo formation of membranous nanotubes between cells. These F-actin-rich structures, referred to as tunneling nanotubes (TNT), were shown to mediate membrane continuity between connected cells and facilitate the intercellular transport of various cellular components. The subsequent identification of TNT-like structures in numerous cell types revealed some structural diversity. At the same time it emerged that the direct transfer of cargo between cells is a common functional property, suggesting a general role of TNT-like structures in selective, long-range cell-to-cell communication. Due to the growing number of documented thin and long cell protrusions in tissue implicated in cell-to-cell signaling, it is intriguing to speculate that TNT-like structures also exist in vivo and participate in important physiological processes

    Tunneling Nanotubes Provide a Unique Conduit for Intercellular Transfer of Cellular Contents in Human Malignant Pleural Mesothelioma

    Get PDF
    Tunneling nanotubes are long, non-adherent F-actin-based cytoplasmic extensions which connect proximal or distant cells and facilitate intercellular transfer. The identification of nanotubes has been limited to cell lines, and their role in cancer remains unclear. We detected tunneling nanotubes in mesothelioma cell lines and primary human mesothelioma cells. Using a low serum, hyperglycemic, acidic growth medium, we stimulated nanotube formation and bidirectional transfer of vesicles, proteins, and mitochondria between cells. Notably, nanotubes developed between malignant cells or between normal mesothelial cells, but not between malignant and normal cells. Immunofluorescent staining revealed their actin-based assembly and structure. Metformin and an mTor inhibitor, Everolimus, effectively suppressed nanotube formation. Confocal microscopy with 3-dimensional reconstructions of sectioned surgical specimens demonstrated for the first time the presence of nanotubes in human mesothelioma and lung adenocarcinoma tumor specimens. We provide the first evidence of tunneling nanotubes in human primary tumors and cancer cells and propose that these structures play an important role in cancer cell pathogenesis and invasion

    Effect of Increased Extracellular Ca++ on Microvesicle Production and Tumor Spheroid Formation

    No full text
    Research on the composition of the tumor micro-environment has demonstrated that membrane delimited microvesicles are shed from many types of malignant tumors, in the peripheral blood of cancer patients as well as in culture media of tumor cells propagated in vitro (Ginestra et al. Anticancer Res 18:3433–3437, 1998). Their documented effects involve the activation of signal transduction pathways by cellular cross-talk that are associated with epigenetic mechanisms that may be important in tumor progression, metastasis, and the activation of angiogenesis (Distler et al. Arthritis Rheum 52:3337–3348, 2005). Live cell imaging microscopic studies conducted in our laboratory of the formation of solid tumor spheroids in vitro show that the shedding of microvesicular structures from tumor cells occurs during this process. The observed properties of the tumor microvesicles suggest a role in solid tumor formation and intercellular communication. The tumor associated microvesicles were shown to be non-apoptotic based on the absence of fluorescent nuclear staining by acridine orange/ethidium bromide staining. Increased concentration of extracellular Ca++ [5–20 mM] resulted in an increase in the production of tumor-derived microvesicles and also to result in the formation of tumor spheroids whose size was considerably smaller than controls. Increased extracellular [Ca++] was also observed to induce the rapid dissociation of solid tumor spheroids to smaller cell aggregates in the absence of significant apoptosis

    Tunneling-nanotube development in astrocytes depends on p53 activation

    No full text
    Tunneling nanotubes (TNTs) can be induced in rat hippocampal astrocytes and neurons with H2O2 or serum depletion. Major cytoskeletal component of TNTs is F-actin. TNTs transfer endoplasmic reticulum, mitochondria, Golgi, endosome and intracellular as well as extracellular amyloid β. TNT development is a property of cells under stress. When two populations of cells are co-cultured, it is the stressed cells that always develop TNTs toward the unstressed cells. p53 is crucial for TNT development. When p53 function is deleted by either dominant negative construct or siRNAs, TNT development is inhibited. In addition, we find that among the genes activated by p53, epidermal growth factor receptor is also important to TNT development. Akt, phosphoinositide 3-kinase and mTOR are involved in TNT induction. Our data suggest that TNTs might be a mechanism for cells to respond to harmful signals and transfer cellular substances or energy to another cell under stress
    corecore