18 research outputs found

    Tomato fruit development in the auxin-resistant dgt mutant is induced by pollination but not by auxin treatment

    No full text
    In tomato (Solanum lycopersicum Mill.), auxin is believed to play a pivotal role in controlling fruit-set and early ovary growth. In this paper we investigated the effect of the reduced auxin sensitivity exhibited by the diageotropica (dgt) tomato mutant on ovary growth during early stage of fruit development. Here we show that in hand-pollinated ovaries fruit-set was not affected by the dgt lesion while fruit growth was reduced. This reduction was associated with a smaller cell size of mesocarp cells, with a lower mean C values and with a lower gene expression of the expansin gene LeExp2. When a synthetic auxin (4-CPA, chlorophenoxyacetic acid) was applied to the flowers of wild type plants, parthenocarpic ovary growth was induced. On the contrary, auxin application to the flowers of dgt plants failed to induce parthenocarpy. Hand-pollinated ovaries of dgt contained higher levels of IAA compared to wild type and this was not associated with high transcript levels of genes encoding a key regulatory enzyme of IAA biosynthesis (ToFZYs) but with lower expression levels of GH3, a gene involved in the conjugation of IAA to amino acids. The expression of diverse Aux/IAA genes and SAUR (small auxin up-regulated RNA) was also altered in the dgt ovaries. The dgt lesion does not seem to affect specific Aux/IAA genes in terms of transcript occurrence but rather in terms of relative levels of expression. Transcript levels of Aux/IAA genes were up regulated in auxin-treated ovaries of wild-type but not in dgt

    Some physiological and morphological responses of Pyrus boissieriana to flooding

    Get PDF
    European pear is a flooding-sensitive species, and for its cultivation in lowland areas, it is necessary to carry out the grafting of scions of commercial pear varieties into rootstocks belonging to flooding-tolerant wild pear species. Flooding tolerance of Pyrus boissieriana—a type of wild pear—was studied as a promissory rootstock for commercial pear. For this purpose, 3-month-old plants of P. boissieriana were subjected for 30 days to control (C), well-irrigated treatment, short-term (15 days) flooding plus 15 days recovery (F + R) and long-term (30 days) continuous flooding (F). Physiological performance, plant morphological changes and biomass accumulation were assessed. Results showed that, although stomatal conductance, transpiration and photosynthesis were progressively decreased by flooding, when flooding was short term (i.e., 2 weeks, F + R treatment) plants were able to adequately recover their physiological activity (50–74 % with respect to controls). In contrast, when plants continued to be flooded (F treatment), the physiological activity became null and the plants died quickly after the water subsided. Adventitious rooting was the most conspicuous registered morphological response to flooding, despite that flooded plants had shorter shoots and roots than control plants. Leaf and root biomass were 63 and 89 % higher under short-term flooding (F + R) than under continuous flooding (F), condition in which plants did not survive. In conclusion, P. boissieriana appears to be a promising species for its use as rootstock of commercial pear in lowland areas prone to flooding of up to 2 weeks. However, if the flooding period is extended, plants of this species are at risk of perishing.Fil: Parad, Ghasem Ali. Tarbiat Modares University. Faculty of Natural Resources and Marine Sciences. Department of Forestry; IránFil: Zarafshar, Mehrdad. Tarbiat Modares University. Faculty of Natural Resources and Marine Sciences. Department of Forestry; IránFil: Striker, Gustavo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura; ArgentinaFil: Sattarian, Ali. Gonbad Kavoos University. Department of Forestry; Irá
    corecore