8 research outputs found

    Gasifikasi Tempurung Kelapa Menggunakan Updraft Gasifier Pada Beberapa Variasi Laju Alir Udara Pembakaran

    Full text link
    Coconut shell is exploited to produce charcoal to be sold now. but it has potency for producing energy. At this study coconut shell was exploited to produce gas fuel with gasification process using updraft gasifier. Gasification process was done at condition different air flow rate i.e 70,2 lpm, 91,4 lpm dan 122,4 lpm. The results of experiment showed gasification could produces combustible gas (CO, CH4,H2) continuously during 3 hours operation for every condition of gasification air flow rate. Increasing the air flow rate will increase temperature inside reactor, gas composition, gas flow rate, gasification efficiency and flame temperature of combustion gas producer

    Kompor Gas Berbahan Bakar Biomassa

    Get PDF
    Adanya kebijakkan pemerintah untuk mengkonversikan minyak tanah ke gas telah menimbulkan permasalahan pada masih belum mampunnya gas menjangkau daerah pedesaan. Pada penelitian dilakukan pemodelan, pembuatan dan pengujian kompor gasifikasi. Spesifikasi kompor, tinggi (ttot) = 74,5 cm, tinggi ruang bakar 42 cm, diameter (d) = 16,5 cm, lebar (l) = 25,3 cm. Hasil pengujian kompor dengan teknologi gasifikasi menggunakan kayu karet dan tongkol jagung menunjukan lamanya api per unggun bahan bakar adalah 30-40 menit, waktu yang dibutuhkan untuk mendidihkan air adalah 4-6 menit. The rule of goverment for converting kerosene to gas made problem in rural to get gas. At this study have conducted modeling, manufacturing and testing a biomass gasification stove. The stove have 74.5 cm total height, 42 cm burner height, 16.5 cm diameter dan ash hopper . The results of eksperiment using rubber wood and cob as fuel showed stove could produce flame 30 until 40 minute with 4 until 6 for one bed fuel, the time for boiling water are 4 until 6 minute

    Pendampingan pembuatan bahan bakar gas dari Biomassa menggunakan Teknologi Gasifikasi

    Get PDF
    The utilization of new and renewable energy is of paramount importance considering the limited reserves of fossil fuels and the negative impacts resulting from their usage. Biomass presents an intriguing option as it can be renewed and is abundantly available in Indonesia. Gasification technology stands as one of the thermochemical methods to convert biomass into gas fuel. This process demonstrates high efficiency and generates low pollution. However, the knowledge of this technology remains confined to certain scientists and practitioners, necessitating the need for socialization and information dissemination, particularly in rural areas. Consequently, demonstrations and training sessions were conducted for the community in Kerinjing Village, Ogan Ilir, South Sumatra. The demonstrations involved students who were trained to operate gasification equipment, with approximately 30 participants attending the training sessions. Additionally, presentations and discussions were held to elucidate the potential of biomass as gas fuel, the main components of gasification apparatus, and the process of converting biomass into gas fuel. The results of the demonstrations revealed a high level of enthusiasm among the residents of Kerinjing Village toward gasification technology. The residents displayed an easy grasp of the straightforward equipment operation and their ability to produce such equipment themselves due to its accessibility and ease of fabrication. The use of simple language in delivering information facilitated the comprehension of gasification technology among the community. In conclusion, gasification technology offers a simple yet promising approach to serve as an alternative energy solution in rural areas. Continuous demonstrations and socialization efforts are imperative to promote wider implementation of this technology, thereby advancing the adoption of new and renewable energy sources. Consequently, it is hoped that this initiative will address the constraints posed by limited fossil fuel reserves and contribute to sustainable developmentPemanfaatan energi baru dan terbarukan sangat penting mengingat terbatasnya sumber energi fosil dan dampak negatif yang dihasilkan oleh penggunaannya. Biomassa menjadi pilihan yang menarik karena dapat diperbaharui dan memiliki ketersediaan yang melimpah di Indonesia. Teknologi gasifikasi merupakan salah satu metode termokimia untuk mengubah biomassa menjadi bahan bakar gas. Proses gasifikasi ini memiliki efisiensi yang tinggi dan menghasilkan polusi yang rendah. Sayangnya, pengetahuan tentang teknologi ini masih terbatas pada ilmuwan dan praktisi tertentu, sehingga perlu dilakukan sosialisasi dan penyampaian informasi kepada masyarakat, terutama di daerah pedesaan. Untuk itu, dilakukan demonstrasi dan pelatihan kepada masyarakat di Desa Kerinjing, Ogan Ilir, Sumatera Selatan. Demonstrasi melibatkan mahasiswa yang telah dilatih untuk mengoperasikan peralatan gasifikasi. Jumlah peserta yang mengikuti pelatihan sekitar 30 orang. Selain itu, dilakukan juga presentasi dan diskusi untuk memberikan penjelasan tentang potensi biomassa sebagai bahan bakar gas, komponen utama alat gasifikasi, dan proses pengubahan biomassa menjadi bahan bakar gas. Hasil demonstrasi menunjukkan antusiasme tinggi dari masyarakat Desa Kerinjing terhadap teknologi gasifikasi ini. Warga dapat dengan mudah memahami pengoperasian peralatan yang sederhana dan mampu membuatnya sendiri karena peralatan tersebut mudah didapatkan dan pembuatannya relatif mudah. Penyampaian informasi dengan bahasa yang sederhana memudahkan pemahaman masyarakat terhadap teknologi gasifikasi. Kesimpulannya, teknologi gasifikasi merupakan cara yang sederhana dan berpotensi untuk dimanfaatkan sebagai solusi energi alternatif di daerah pedesaan. Demonstrasi dan sosialisasi terus perlu dilakukan agar teknologi ini dapat diterapkan secara lebih luas dalam upaya meningkatkan penggunaan energi baru dan terbarukan. Dengan demikian, diharapkan dapat mengatasi permasalahan keterbatasan sumber energi fosil dan memberikan kontribusi pada pembangunan berkelanjutan

    Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    No full text
    The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor)

    Combustion of producer gas from gasification of south Sumatera lignite coal using CFD simulation

    No full text
    The production of gasses from lignite coal gasification is one of alternative fuel for the boiler or gas turbine. The prediction of temperature distribution inside the burner is important for the application and optimization of the producer gas. This research aims to provide the information about the influence of excess air on the temperature distribution and combustion product in the non-premixed burner. The process was carried out using producer gas from lignite coal gasification of BA 59 was produced by the updraft gasifier which is located on Energy Conversion Laboratory Mechanical Engineering Department Universitas Sriwijaya. The excess air used in the combustion process were respectively 10%, 30% and 50%. CFD Simulations was performed in this work using two-dimensional model of the burner. The result of the simulation showed an increase of excess air, a reduction in the gas burner temperature and the composition of gas (carbon dioxide, nitric oxide and water vapor)

    Thermodynamic Model for Updraft Gasifier with External Recirculation of Pyrolysis Gas

    No full text
    Most of the thermodynamic modeling of gasification for updraft gasifier uses one process of decomposition (decomposition of fuel). In the present study, a thermodynamic model which uses two processes of decomposition (decomposition of fuel and char) is used. The model is implemented in modification of updraft gasifier with external recirculation of pyrolysis gas to the combustion zone and the gas flowing out from the side stream (reduction zone) in the updraft gasifier. The goal of the model obtains the influences of amount of recirculation pyrolysis gas fraction to combustion zone on combustible gas and tar. The significant results of modification updraft are that the increases amount of recirculation of pyrolysis gas will increase the composition of H2 and reduce the composition of tar; then the composition of CO and CH4 is dependent on equivalence ratio. The results of the model for combustible gas composition are compared with previous study

    Simulasi dan Eksperimental Isothermal Aliran Eksternal Resirkulasi pada Up-Draft Gasifier

    No full text
    Gasification process at updraft gasifier produces greater amount of tar than other type of gasifier. To reduce tar at updraft gasifier, the pirolysis gas will be re-circulated to combustion zone and to exhaust gas from reduction zone. Recirculation of pirolysis gas to combustion zone can be carried out by using ejector. Ejector is an equipment used to inject the secondary fluid flow by the movement of momentum and energy from high speed primary flow (jet). The research conducted with isothermal 3D simulation using CFD and experimental investigation of recirculation flow using ejector at updraft gasifier. Ejector velocity for simulation and experimentation is constant at 0.6 m/s. Ejector’s nozzle exit position (NXP) direction will be varied. The goal of this research is to obtain information of optimal nozzle exit position for producing maximum velocity of gas recirculation. The result of simulation and experiment shows that the change of nozzle exit position direction to – x axis from zero point, it will give maximum velocity of gas recirculation flow with the optimum position of nozzle exit position at the range of -3 to -4 cm from zero point
    corecore