6 research outputs found

    HDAC inhibition as a therapeutic potential to treat metabolic diseases

    Full text link
    Type 2 diabetes is one of the leading threats to human health. The research focused to identify new drugs that could partly mimic the positive effects of exercise and to test whether these drugs could have the potential to treat metabolic diseases such as obesity and type 2 diabete

    Improved Synthesis and Structural Reassignment of MC1568: A Class IIa Selective HDAC Inhibitor

    No full text
    An improved synthesis and structural reassignment of the class IIa selective histone deacetylase (HDAC) inhibitor MC1568 are described

    Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress

    Full text link
    Some gene deletions or mutations have little effect on metabolism and metabolic adaptation because of redundancy and/or compensation in metabolic pathways. The mechanisms for redundancy and/or compensation in metabolic adaptation in mammalian cells are unidentified. Here, we show that in mouse muscle and myogenic cells, compensatory regulation of the histone deacetylase (HDAC5) transcriptional repressor maintains metabolic integrity. HDAC5 phosphorylation regulated the expression of diverse metabolic genes and glucose metabolism in mouse C2C12 myogenic cells. However, loss of AMP-activated protein kinase (AMPK), a HDAC5 kinase, in muscle did not affect HDAC5 phosphorylation in mouse skeletal muscle during exercise, but resulted in a compensatory increase (32.6%) in the activation of protein kinase D (PKD), an alternate HDAC5 kinase. Constitutive PKD activation in mouse C2C12 myogenic cells regulated metabolic genes and glucose metabolism. Although aspects of this response were HDAC5 phosphorylation dependent, blocking HDAC5 phosphorylation when PKD was active engaged an alternative compensatory adaptive mechanism, which involved post-transcriptional reductions in HDAC5 mRNA (−93.1%) and protein. This enhanced the expression of a specific subset of metabolic genes and mitochondrial metabolism. These data show that compensatory regulation of HDAC5 maintains metabolic integrity in mammalian cells and reinforces the importance of preserving the cellular metabolic adaptive response.—McGee, S. L., Swinton, C., Morrison, S., Gaur, V., Campbell, D. E., Jorgensen, S. B., Kemp, B. E., Baar, K., Steinberg, G. R., Hargreaves, M. Compensatory regulation of HDAC5 in muscle maintains metabolic adaptive responses and metabolism in response to energetic stress
    corecore