424,393 research outputs found
On the impact of the GOP size in a temporal H.264/AVC-to-SVC transcoder in baseline and main profile
Scalable video coding is a recent extension of the advanced video coding H.264/AVC standard developed jointly by ISO/IEC and ITU-T, which allows adapting the bitstream easily by dropping parts of it named layers. This adaptation makes it possible for a single bitstream to meet the requirements for reliable delivery of video to diverse clients over heterogeneous networks using temporal, spatial or quality scalability, combined or separately. Since the scalable video coding design requires scalability to be provided at the encoder side, existing content cannot benefit from it. Efficient techniques for converting contents without scalability to a scalable format are desirable. In this paper, an approach for temporal scalability transcoding from H.264/AVC to scalable video coding in baseline and main profile is presented and the impact of the GOP size is analyzed. Independently of the GOP size chosen, time savings of around 63 % for baseline profile and 60 % for main profile are achieved while maintaining the coding efficiency
Mobile Audiovisual Terminal: System Design and Subjective Testing in DECT and UMTS networks
It is anticipated that there will shortly be a requirement
for multimedia terminals that operate via mobile
communications systems. This paper presents a functional specification
for such a terminal operating at 32 kb/s in a digital
European cordless telecommunications (DECT) and universal
mobile telecommunications system (UMTS) radio network. A terminal
has been built, based on a PC with digital signal processor
(DSP) boards for audio and video coding and decoding. Speech
coding is by a phonetically driven code-excited linear prediction
(CELP) speech coder and video coding by a block-oriented hybrid
discrete cosine transform (DCT) coder. Separate channel coding
is provided for the audio and video data. The paper describes the
techniques used for audio and video coding, channel coding, and
synchronization. Methods of subjective testing in a DECT network
and in a UMTS network are also described. These consisted of
subjective tests of first impressions of the mobile audio–visual
terminal (MAVT) quality, interactive tests, and the completion
of an exit questionnaire. The test results showed that the quality
of the audio was sufficiently good for comprehension and the
video was sufficiently good for following and repeating simple
mechanical tasks. However, the quality of the MAVT was not
good enough for general use where high-quality audio and video
was needed, especially when transmission was in a noisy radio
environment
Temporal video transcoding from H.264/AVC-to-SVC for digital TV broadcasting
Mobile digital TV environments demand flexible video compression like scalable video coding (SVC) because of varying bandwidths and devices. Since existing infrastructures highly rely on H.264/AVC video compression, network providers could adapt the current H.264/AVC encoded video to SVC. This adaptation needs to be done efficiently to reduce processing power and operational cost. This paper proposes two techniques to convert an H.264/AVC bitstream in Baseline (P-pictures based) and Main Profile (B-pictures based) without scalability to a scalable bitstream with temporal scalability as part of a framework for low-complexity video adaptation for digital TV broadcasting. Our approaches are based on accelerating the interprediction, focusing on reducing the coding complexity of mode decision and motion estimation tasks of the encoder stage by using information available after the H. 264/AVC decoding stage. The results show that when our techniques are applied, the complexity is reduced by 98 % while maintaining coding efficiency
- …
