30 research outputs found
Chicken faecal microbiota and disturbances induced by single or repeated therapy with tetracycline and streptomycin
BACKGROUND: In this study, we characterised the microbiota present in the faeces of 15- and 46-week-old egg laying hens before and after tetracycline or streptomycin therapy. In the first experiment, the layers were subjected to 7 days of therapy. In the second experiment, the hens were subjected to two days of therapy, which was repeated for an additional two days after 12 days of antibiotic withdrawal. This enabled us to characterise dynamics of the changes after antibiotic administration and withdrawal, and to identify genera repeatedly resistant to tetracycline and streptomycin. RESULTS: Real-time PCRs specific for Enterobacteriales, Lactobacillales, Clostridiales and Bifidobacteriales showed that changes in the microbiota in response to antibiotic therapy and antibiotic withdrawal were quite rapid and could be observed within 24 hours after the change in therapy status. Pyrosequencing of PCR amplified V3/V4 variable regions of 16S rRNA genes showed that representatives of the orders Clostridiales, Lactobacillales, Bacteroidales, Bifidobacteriales, Enterobacteriales, Erysipelotrichales, Coriobacteriales, Desulfovibrionales, Burkholderiales, Campylobacterales and Actinomycetales were detected in the faeces of hens prior to the antibiotic therapy. Tetracycline and streptomycin therapies decreased the prevalence of Bifidobacteriales, Bacteroidales, Clostridiales, Desulfovibrionales, Burkholderiales and Campylobacterales in faecal samples in both experiments. On the other hand, Enterobacteriales and Lactobacillales always increased in prevalence in response to both therapies. Within the latter two orders, Escherichia and Enterococcus were the genera prevalence of which increased after all the antibiotic treatments. CONCLUSIONS: The changes in microbiota composition induced by the antibiotic therapy were rapid and quite dramatic and only representatives of the genera Enterococcus and Escherichia increased in response to the therapy with both antibiotics in both experiments
Multi-omics signatures in new-onset diabetes predict metabolic response to dietary inulin: findings from an observational study followed by an interventional trial
AIM: The metabolic performance of the gut microbiota contributes to the onset of type 2 diabetes. However, targeted dietary interventions are limited by the highly variable inter-individual response. We hypothesized (1) that the composition of the complex gut microbiome and metabolome (MIME) differ across metabolic spectra (lean-obese-diabetes); (2) that specific MIME patterns could explain the differential responses to dietary inulin; and (3) that the response can be predicted based on baseline MIME signature and clinical characteristics. METHOD: Forty-nine patients with newly diagnosed pre/diabetes (DM), 66 metabolically healthy overweight/obese (OB), and 32 healthy lean (LH) volunteers were compared in a cross-sectional case-control study integrating clinical variables, dietary intake, gut microbiome, and fecal/serum metabolomes (16 S rRNA sequencing, metabolomics profiling). Subsequently, 27 DM were recruited for a predictive study: 3 months of dietary inulin (10 g/day) intervention. RESULTS: MIME composition was different between groups. While the DM and LH groups represented opposite poles of the abundance spectrum, OB was closer to DM. Inulin supplementation was associated with an overall improvement in glycemic indices, though the response was very variable, with a shift in microbiome composition toward a more favorable profile and increased serum butyric and propionic acid concentrations. The improved glycemic outcomes of inulin treatment were dependent on better baseline glycemic status and variables related to the gut microbiota, including the abundance of certain bacterial taxa (i.e., Blautia, Eubacterium halii group, Lachnoclostridium, Ruminiclostridium, Dialister, or Phascolarctobacterium), serum concentrations of branched-chain amino acid derivatives and asparagine, and fecal concentrations of indole and several other volatile organic compounds. CONCLUSION: We demonstrated that obesity is a stronger determinant of different MIME patterns than impaired glucose metabolism. The large inter-individual variability in the metabolic effects of dietary inulin was explained by differences in baseline glycemic status and MIME signatures. These could be further validated to personalize nutritional interventions in patients with newly diagnosed diabetes
Molecular Techniques Complement Culture-Based Assessment of Bacteria Composition in Mixed Biofilms of Urinary Tract Catheter-Related Samples
Urinary or ureteral catheter insertion remains one of the most common urological procedures, yet is considered a predisposing factor for urinary tract infection. Diverse bacterial consortia adhere to foreign body surfaces and create various difficult to treat biofilm structures. We analyzed 347 urinary catheter- and stent-related samples, treated with sonication, using both routine culture and broad-range 16S rDNA PCR followed by Denaturing Gradient Gel Electrophoresis and Sanger sequencing (PCR-DGGE-S). In 29 selected samples, 16S rRNA amplicon Illumina sequencing was performed. The results of all methods were compared. In 338 positive samples, from which 86.1% were polybacterial, 1,295 representatives of 153 unique OTUs were detected. Gram-positive microbes were found in 46.5 and 59.1% of catheter- and stent-related samples, respectively. PCR-DGGE-S was shown as a feasible method with higher overall specificity (95 vs. 85%, p < 0.01) though lower sensitivity (50 vs. 69%, p < 0.01) in comparison to standard culture. Molecular methods considerably widened a spectrum of microbes detected in biofilms, including the very prevalent emerging opportunistic pathogen Actinotignum schaalii. Using massive parallel sequencing as a reference method in selected specimens, culture combined with PCR-DGGE was shown to be an efficient and reliable tool for determining the composition of urinary catheter-related biofilms. This might be applicable particularly to immunocompromised patients, in whom catheter-colonizing bacteria may lead to severe infectious complications. For the first time, broad-range molecular detection sensitivity and specificity were evaluated in this setting. This study extends the knowledge of biofilm consortia composition by analyzing large urinary catheter and stent sample sets using both molecular and culture techniques, including the widest dataset of catheter-related samples characterized by 16S rRNA amplicon Illumina sequencing
The Human Mycobiome: Colonization, Composition and the Role in Health and Disease
The mycobiome is the fungal component of the human microbial ecosystem that represents only a small part of this environment but plays an essential role in maintaining homeostasis. Colonization by fungi begins immediately after birth. The initial mycobiome is influenced by the gestational age of a newborn, birth weight, delivery method and feeding method. During a human’s life, the composition of the mycobiome is further influenced by a large number of endogenous and exogenous factors. The most important factors are diet, body weight, age, sex and antibiotic and antifungal therapy. The human mycobiome inhabits the oral cavity, gastrointestinal tract, respiratory tract, urogenital tract and skin. Its composition can influence the gut–brain axis through immune and non-immune mediated crosstalk systems. It also interacts with other commensals of the ecosystem through synergistic and antagonistic relationships. Moreover, colonization of the gut by opportunistic fungal pathogens in immunocompromised individuals can lead to clinically relevant disease states. Thus, the mycobiome represents an essential part of the microbiome associated with a variety of physiological and pathological processes. This review summarizes the current knowledge on the composition of the mycobiome in specific sites of the human body and its role in health and disease
Faecal bacterial composition in dairy cows shedding Mycobacterium avium subsp. paratuberculosis in faeces in comparison to non-shedding cows
The aim of this study was to determine possible differences in the faecal microbiota of dairy cows infected with Mycobacterium avium subsp. paratuberculosis (Johne’s disease) in comparison with not infeced cows from the same herds. Faecal samples from cows in four herds were tested using real-time PCR for Mycobacterium avium subsp. paratuberculosis and faecal bacterial populations were analysed using 454 pyrosequencing of the 16S rRNA gene. Most notable differences between shedding and not shedding cows included an increase in the genus Psychrobacter and a decrease in Oscillospira, Ruminoccocus and Bifidobacterium genera in cows infected with M. avium subsp. paratuberculosis. The present study is the first to report the faecal microbial composition in dairy cows infected with M. avium subsp. paratuberculosis.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author
Enrichment of human nasopharyngeal bacteriome with bacteria from dust after short-term exposure to indoor environment: a pilot study
Abstract Background Indoor dust particles are an everyday source of human exposure to microorganisms and their inhalation may directly affect the microbiota of the respiratory tract. We aimed to characterize the changes in human nasopharyngeal bacteriome after short-term exposure to indoor (workplace) environments. Methods In this pilot study, nasopharyngeal swabs were taken from 22 participants in the morning and after 8 h of their presence at the workplace. At the same time points, indoor dust samples were collected from the participants’ households (16 from flats and 6 from houses) and workplaces (8 from a maternity hospital – NEO, 6 from a pediatric hospital – ENT, and 8 from a research center – RCX). 16S rRNA sequencing analysis was performed on these human and environmental matrices. Results Staphylococcus and Corynebacterium were the most abundant genera in both indoor dust and nasopharyngeal samples. The analysis indicated lower bacterial diversity in indoor dust samples from flats compared to houses, NEO, ENT, and RCX (p  0.05, Shannon index). These “enriching” bacterial genera overlapped between the hospital workplaces – NEO and ENT but differed from those in the research center – RCX. Conclusions The results suggest that although the composition of nasopharyngeal bacteriome is relatively stable during the day. Short-term exposure to the indoor environment can result in the enrichment of the nasopharynx with bacterial DNA from indoor dust; the bacterial composition, however, varies by the indoor workplace environment
Heat map showing the correlation coefficients of the presence of individual families and particular antibiotic resistance genes.
<p>Three main clusters according to their positive and negative correlation with the prevalence of antibiotic resistance genes tested in this study are indicated by red, blue and green color.</p
Distribution of selected genes in integron structures determined by pyrosequencing and real-time PCR.
<p>Average values calculated from data available for 48 samples were used for both real-time PCR based pie charts. Quantification of genes in integrons by pyrosequencing and real-time PCR resulted in similar results whereas the comparison of these results with the results from carriage water DNA indicated that <i>dfrA</i> was associated with integrons as its representation decreased when total carriage water was used as a template in real-time PCR. On the other hand, <i>aacA</i> and <i>ereA</i> must have been common in genetic elements different from integrons.</p
Genes detected in class I integrons in carriage water microbiota of ornamental fish. Numbers show percentages out of a total of 18,806 reads.
<p>*QAC-quaternary ammonium compounds, Tp-trimethoprim, Str-streptomycin, AG-aminoglycosides, Cm-chloramphenicol, Ery-erythromycin, Kan–kanamycin, Rif–rifampicin, Enr–enrofloxacin.</p
Composition of ornamental fish carriage water microbiota at class level.
<p>1 – <i>Sphingobacteria</i>, 2 – <i>Gammaproteobacteria</i>, 3 – <i>Fusobacteria</i>, 4 – <i>Flavobacteria</i>, 5 – <i>Clostridia</i>, 6 – <i>Betaproteobacteria</i>, 7 – <i>Bacteroidia</i>, 8 – <i>Alphaproteobacteria</i>, 9 – <i>Bacilli</i>, 10 – <i>Actinobacteria</i>. For the full data set see <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0103865#pone.0103865.s001" target="_blank">table S1</a>.</p