102 research outputs found

    On entire matrix-valued functions

    Get PDF
    AbstractLet A(z) be a given polynomial n×n matrix with det A(z)=1. It is shown that there exists an entire matrix-valued function X(z) such that expX(z)=A(z) if and only if the eigenvalues of A(z) are independent of z

    The matricial relaxation of a linear matrix inequality

    Full text link
    Given linear matrix inequalities (LMIs) L_1 and L_2, it is natural to ask: (Q1) when does one dominate the other, that is, does L_1(X) PsD imply L_2(X) PsD? (Q2) when do they have the same solution set? Such questions can be NP-hard. This paper describes a natural relaxation of an LMI, based on substituting matrices for the variables x_j. With this relaxation, the domination questions (Q1) and (Q2) have elegant answers, indeed reduce to constructible semidefinite programs. Assume there is an X such that L_1(X) and L_2(X) are both PD, and suppose the positivity domain of L_1 is bounded. For our "matrix variable" relaxation a positive answer to (Q1) is equivalent to the existence of matrices V_j such that L_2(x)=V_1^* L_1(x) V_1 + ... + V_k^* L_1(x) V_k. As for (Q2) we show that, up to redundancy, L_1 and L_2 are unitarily equivalent. Such algebraic certificates are typically called Positivstellensaetze and the above are examples of such for linear polynomials. The paper goes on to derive a cleaner and more powerful Putinar-type Positivstellensatz for polynomials positive on a bounded set of the form {X | L(X) PsD}. An observation at the core of the paper is that the relaxed LMI domination problem is equivalent to a classical problem. Namely, the problem of determining if a linear map from a subspace of matrices to a matrix algebra is "completely positive".Comment: v1: 34 pages, v2: 41 pages; supplementary material is available in the source file, or see http://srag.fmf.uni-lj.si

    Angles Between Infinite Dimensional Subspaces with Applications to the Rayleigh-Ritz and Alternating Projectors Methods

    Get PDF
    We define angles from-to and between infinite dimensional subspaces of a Hilbert space, inspired by the work of E. J. Hannan, 1961/1962 for general canonical correlations of stochastic processes. The spectral theory of selfadjoint operators is used to investigate the properties of the angles, e.g., to establish connections between the angles corresponding to orthogonal complements. The classical gaps and angles of Dixmier and Friedrichs are characterized in terms of the angles. We introduce principal invariant subspaces and prove that they are connected by an isometry that appears in the polar decomposition of the product of corresponding orthogonal projectors. Point angles are defined by analogy with the point operator spectrum. We bound the Hausdorff distance between the sets of the squared cosines of the angles corresponding to the original subspaces and their perturbations. We show that the squared cosines of the angles from one subspace to another can be interpreted as Ritz values in the Rayleigh-Ritz method, where the former subspace serves as a trial subspace and the orthogonal projector of the latter subspace serves as an operator in the Rayleigh-Ritz method. The Hausdorff distance between the Ritz values, corresponding to different trial subspaces, is shown to be bounded by a constant times the gap between the trial subspaces. We prove a similar eigenvalue perturbation bound that involves the gap squared. Finally, we consider the classical alternating projectors method and propose its ultimate acceleration, using the conjugate gradient approach. The corresponding convergence rate estimate is obtained in terms of the angles. We illustrate a possible acceleration for the domain decomposition method with a small overlap for the 1D diffusion equation.Comment: 22 pages. Accepted to Journal of Functional Analysi

    Phase Transition in a Vlasov-Boltzmann Binary Mixture

    Full text link
    There are not many kinetic models where it is possible to prove bifurcation phenomena for any value of the Knudsen number. Here we consider a binary mixture over a line with collisions and long range repulsive interaction between different species. It undergoes a segregation phase transition at sufficiently low temperature. The spatially homogeneous Maxwellian equilibrium corresponding to the mixed phase, minimizing the free energy at high temperature, changes into a maximizer when the temperature goes below a critical value, while non homogeneous minimizers, corresponding to coexisting segregated phases, arise. We prove that they are dynamically stable with respect to the Vlasov-Boltzmann evolution, while the homogeneous equilibrium becomes dynamically unstable

    Decay and Continuity of Boltzmann Equation in Bounded Domains

    Full text link
    Boundaries occur naturally in kinetic equations and boundary effects are crucial for dynamics of dilute gases governed by the Boltzmann equation. We develop a mathematical theory to study the time decay and continuity of Boltzmann solutions for four basic types of boundary conditions: inflow, bounce-back reflection, specular reflection, and diffuse reflection. We establish exponential decay in LL^{\infty} norm for hard potentials for general classes of smooth domains near an absolute Maxwellian. Moreover, in convex domains, we also establish continuity for these Boltzmann solutions away from the grazing set of the velocity at the boundary. Our contribution is based on a new L2L^{2} decay theory and its interplay with delicate % L^{\infty} decay analysis for the linearized Boltzmann equation, in the presence of many repeated interactions with the boundary.Comment: 89 pages

    Asymptotic Stability of the Relativistic Boltzmann Equation for the Soft Potentials

    Full text link
    In this paper it is shown that unique solutions to the relativistic Boltzmann equation exist for all time and decay with any polynomial rate towards their steady state relativistic Maxwellian provided that the initial data starts out sufficiently close in LL^\infty_\ell. If the initial data are continuous then so is the corresponding solution. We work in the case of a spatially periodic box. Conditions on the collision kernel are generic in the sense of (Dudy{\'n}ski and Ekiel-Je{\.z}ewska, Comm. Math. Phys., 1988); this resolves the open question of global existence for the soft potentials.Comment: 64 page
    corecore