7 research outputs found

    Deposition of size-selected cu nanoparticles by Inert Gas Condensation

    Get PDF
    Nanometer size-selected Cu clusters in the size range of 1–5 nm have been produced by a plasma-gascondensation-type cluster deposition apparatus, which combines a grow-discharge sputtering with an inert gas condensation technique. With this method, by controlling the experimental conditions, it was possible to produce nanoparticles with a strict control in size. The structure and size of Cu nanoparticles were determined by mass spectroscopy and confirmed by atomic force microscopy (AFM) and scanning electron transmission microscopy (STEM) measurements. In order to preserve the structural and morphological properties, the energy of cluster impact was controlled; the energy of acceleration of the nanoparticles was in near values at 0.1 ev/atom for being in soft landing regime. From SEM measurements developed in STEM-HAADF mode, we found that nanoparticles are near sized to those values fixed experimentally also confirmed by AFM observations. The results are relevant, since it demonstrates that proper optimization of operation conditions can lead to desired cluster sizes as well as desired cluster size distributions. It was also demonstrated the efficiency of the method to obtain size-selected Cu clusters films, as a random stacking of nanometer-size crystallites assembly. The deposition of size-selected metal clusters represents a novel method of preparing Cu nanostructures, with high potential in optical and catalytic application

    Effect of sealing treatment on the corrosion behavior of anodized AA2099 aluminum-lithium alloy

    Get PDF
    The corrosion behavior of the sulphuric-anodized AA2099 using two different current densities, 0.19 or 1.0 A·cm−2, with two different sealing treatments in H2O and 6 wt.% Na2Cr2O7 at 95 °C was studied in 3.5 wt.% NaCl and 10 vol.% H2SO4 solutions. The AA2099 is widely used in aeronautical applications, thus it is essential to present good corrosion performance in chloride and acid rain environments. The surface morphology of the anodized film was characterized by scanning electron microscopy (SEM), the electrochemical corrosion behavior was studied using electrochemical impedance (EIS), and finally characterization of the surface chemical composition was revealed by X-ray photoelectron spectroscopy (XPS). It was found the 6 wt.% Na2Cr2O7 sealing treatment imparts a more homogeneous and compact passive layer, and tends to increase the charge transfer resistance, thus improving the corrosion behavior of the anodized AA2099

    Corrosion Behavior of AA2055 Aluminum-Lithium Alloys Anodized in the Presence of Sulfuric Acid Solution

    Get PDF
    The aim of this work was to evaluate the corrosion behavior of the AA2055 Aluminum-lithium alloy anodized in a sulfuric acid (H2SO4) bath, varying the current density of 0.19 and 1 A·cm−2 and why the sealing solution was water (H2O) and sodium dichromate (Na2Cr2O7). Anodized samples were exposed to a 10 vol.% H2SO4 solution and the electrochemical technique used was electrochemical impedance spectroscopy. Scanning electron microscopy and X-ray photoelectron spectroscopy were employed to characterization of the anodizing layer, determinate morphology and thickness of coatings. The Na2Cr2O7 sealing solution tends to increase the charge transfer resistance and produces a more homogeneous and compact passive oxide layer, and imparts a corrosion inhibition protection to the AA2055. SEM observations indicated that the morphology and thickness of the anodic films formed on AA2055 aluminum-lithium alloy anodized have the best results for both current densities
    corecore