15 research outputs found

    Modelling agronomic properties of Technosols constructed with urban wastes

    Get PDF
    International audienceThe greening of urban and suburban areas requires large amounts of arable earth that is a non-renewable resource. However, concentration of population in cities leads to the production of high amounts of wastes and by-products that are nowadays partly recycled as a resource and quite systematically exported out of urban areas. To preserve natural soil resources, a strategy of waste recycling as fertile substitutes is proposed. Eleven wastes are selected for their environmental harmlessness and their contrasted physico-chemical properties for their potential use in pedological engineering. The aim is (i) to demonstrate the feasibility of the formulation of fertile substrates exclusively with wastes and (ii) to model their physico-chemical properties following various types, number and proportions of constitutive wastes. Twenty-five binary and ternary combinations are tested at different ratios for total carbon, Olsen available phosphorus, cation exchange capacity, water pH, water retention capacity and bulk density. Dose-response curves describe the variation of physico-chemical properties of mixtures depending on the type and ratio of selected wastes. If these mixtures mainly mimic natural soils, some of them present more extreme urban soil features, especially for pH and P Olsen. The fertility of the new substrates is modelled by multilinear regressions for the main soil properties

    Big Bang nucleosynthesis and physics beyond the Standard Model

    Get PDF
    The Hubble expansion of galaxies, the 2.73\dK blackbody radiation background and the cosmic abundances of the light elements argue for a hot, dense origin of the universe --- the standard Big Bang cosmology --- and enable its evolution to be traced back fairly reliably to the nucleosynthesis era when the temperature was of \Or(1) MeV corresponding to an expansion age of \Or(1) sec. All particles, known and hypothetical, would have been created at higher temperatures in the early universe and analyses of their possible effects on the abundances of the synthesized elements enable many interesting constraints to be obtained on particle properties. These arguments have usefully complemented laboratory experiments in guiding attempts to extend physics beyond the Standard SU(3)_{\c}{\otimes}SU(2)_{\L}{\otimes}U(1)_{Y} Model, incorporating ideas such as supersymmetry, compositeness and unification. We first present a pedagogical account of relativistic cosmology and primordial nucleosynthesis, discussing both theoretical and observational aspects, and then proceed to examine such constraints in detail, in particular those pertaining to new massless particles and massive unstable particles. Finally, in a section aimed at particle physicists, we illustrate applications of such constraints to models of new physics.Comment: 156 pages LaTeX, including 18 PostScript figures; uses ioplppt.sty, epsf, and personal style file (incl.); Revised and updated to include, e.g. implications of new deuterium observations in primordial clouds; 2-up PostScript version (78 pages) available at ftp://ftp.physics.ox.ac.uk/pub/local/users/sarkar/BBNreview.ps.gz ; to appear in Reports on Progress in Physic

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead
    corecore