27,766 research outputs found

    A class of quantum many-body states that can be efficiently simulated

    Get PDF
    We introduce the multi-scale entanglement renormalization ansatz (MERA), an efficient representation of certain quantum many-body states on a D-dimensional lattice. Equivalent to a quantum circuit with logarithmic depth and distinctive causal structure, the MERA allows for an exact evaluation of local expectation values. It is also the structure underlying entanglement renormalization, a coarse-graining scheme for quantum systems on a lattice that is focused on preserving entanglement.Comment: 4 pages, 5 figure

    Entanglement renormalization

    Get PDF
    In the context of real-space renormalization group methods, we propose a novel scheme for quantum systems defined on a D-dimensional lattice. It is based on a coarse-graining transformation that attempts to reduce the amount of entanglement of a block of lattice sites before truncating its Hilbert space. Numerical simulations involving the ground state of a 1D system at criticality show that the resulting coarse-grained site requires a Hilbert space dimension that does not grow with successive rescaling transformations. As a result we can address, in a quasi-exact way, tens of thousands of quantum spins with a computational effort that scales logarithmically in the system's size. The calculations unveil that ground state entanglement in extended quantum systems is organized in layers corresponding to different length scales. At a quantum critical point, each rellevant length scale makes an equivalent contribution to the entanglement of a block with the rest of the system.Comment: 4 pages, 4 figures, updated versio

    Development of the Vertebral Joints (C3 through T2) in Man

    Get PDF

    Scalable Sparse Subspace Clustering by Orthogonal Matching Pursuit

    Full text link
    Subspace clustering methods based on â„“1\ell_1, â„“2\ell_2 or nuclear norm regularization have become very popular due to their simplicity, theoretical guarantees and empirical success. However, the choice of the regularizer can greatly impact both theory and practice. For instance, â„“1\ell_1 regularization is guaranteed to give a subspace-preserving affinity (i.e., there are no connections between points from different subspaces) under broad conditions (e.g., arbitrary subspaces and corrupted data). However, it requires solving a large scale convex optimization problem. On the other hand, â„“2\ell_2 and nuclear norm regularization provide efficient closed form solutions, but require very strong assumptions to guarantee a subspace-preserving affinity, e.g., independent subspaces and uncorrupted data. In this paper we study a subspace clustering method based on orthogonal matching pursuit. We show that the method is both computationally efficient and guaranteed to give a subspace-preserving affinity under broad conditions. Experiments on synthetic data verify our theoretical analysis, and applications in handwritten digit and face clustering show that our approach achieves the best trade off between accuracy and efficiency.Comment: 13 pages, 1 figure, 2 tables. Accepted to CVPR 2016 as an oral presentatio

    Creation and Manipulation of Anyons in the Kitaev Model

    Full text link
    We analyze the effect of local spin operators in the Kitaev model on the honeycomb lattice. We show, in perturbation around the isolated-dimer limit, that they create Abelian anyons together with fermionic excitations which are likely to play a role in experiments. We derive the explicit form of the operators creating and moving Abelian anyons without creating fermions and show that it involves multi-spin operations. Finally, the important experimental constraints stemming from our results are discussed.Comment: 4 pages, 3 figures, published versio

    Provable Self-Representation Based Outlier Detection in a Union of Subspaces

    Full text link
    Many computer vision tasks involve processing large amounts of data contaminated by outliers, which need to be detected and rejected. While outlier detection methods based on robust statistics have existed for decades, only recently have methods based on sparse and low-rank representation been developed along with guarantees of correct outlier detection when the inliers lie in one or more low-dimensional subspaces. This paper proposes a new outlier detection method that combines tools from sparse representation with random walks on a graph. By exploiting the property that data points can be expressed as sparse linear combinations of each other, we obtain an asymmetric affinity matrix among data points, which we use to construct a weighted directed graph. By defining a suitable Markov Chain from this graph, we establish a connection between inliers/outliers and essential/inessential states of the Markov chain, which allows us to detect outliers by using random walks. We provide a theoretical analysis that justifies the correctness of our method under geometric and connectivity assumptions. Experimental results on image databases demonstrate its superiority with respect to state-of-the-art sparse and low-rank outlier detection methods.Comment: 16 pages. CVPR 2017 spotlight oral presentatio

    Characterizing topological order by studying the ground states of an infinite cylinder

    Full text link
    Given a microscopic lattice Hamiltonian for a topologically ordered phase, we describe a tensor network approach to characterize its emergent anyon model and, in a chiral phase, also its gapless edge theory. First, a tensor network representation of a complete, orthonormal set of ground states on a cylinder of infinite length and finite width is obtained through numerical optimization. Each of these ground states is argued to have a different anyonic flux threading through the cylinder. In a chiral phase, the entanglement spectrum of each ground state is seen to reveal a different sector of the corresponding gapless edge theory. A quasi-orthogonal basis on the torus is then produced by chopping off and reconnecting the tensor network representation on the cylinder. Elaborating on the recent proposal of [Y. Zhang et al. Phys. Rev. B 85, 235151 (2012)], a rotation on the torus yields an alternative basis of ground states and, through the computation of overlaps between bases, the modular matrices S and U (containing the mutual and self statistics of the different anyon species) are extracted. As an application, we study the hard-core boson Haldane model by using the two-dimensional density matrix renormalization group. A thorough characterization of the universal properties of this lattice model, both in the bulk and at the edge, unambiguously shows that its ground space realizes the \nu=1/2 bosonic Laughlin state.Comment: 10 pages, 11 figure

    Simulation of anyons with tensor network algorithms

    Get PDF
    Interacting systems of anyons pose a unique challenge to condensed matter simulations due to their non-trivial exchange statistics. These systems are of great interest as they have the potential for robust universal quantum computation, but numerical tools for studying them are as yet limited. We show how existing tensor network algorithms may be adapted for use with systems of anyons, and demonstrate this process for the 1-D Multi-scale Entanglement Renormalisation Ansatz (MERA). We apply the MERA to infinite chains of interacting Fibonacci anyons, computing their scaling dimensions and local scaling operators. The scaling dimensions obtained are seen to be in agreement with conformal field theory. The techniques developed are applicable to any tensor network algorithm, and the ability to adapt these ansaetze for use on anyonic systems opens the door for numerical simulation of large systems of free and interacting anyons in one and two dimensions.Comment: Fixed typos, matches published version. 16 pages, 21 figures, 4 tables, RevTeX 4-1. For a related work, see arXiv:1006.247
    • …
    corecore