21,707 research outputs found

    Aharonov-Bohm cages in the GaAlAs/GaAs system

    Full text link
    Aharonov-Bohm oscillations have been observed in a lattice formed by a two dimensional rhombus tiling. This observation is in good agreement with a recent theoretical calculation of the energy spectrum of this so-called T3 lattice. We have investigated the low temperature magnetotransport of the T3 lattice realized in the GaAlAs/GaAs system. Using an additional electrostatic gate, we have studied the influence of the channel number on the oscillations amplitude. Finally, the role of the disorder on the strength of the localization is theoretically discussed.Comment: 6 pages, 11 EPS figure

    Chiral spin liquid and emergent anyons in a Kagome lattice Mott insulator

    Full text link
    Topological phases in frustrated quantum spin systems have fascinated researchers for decades. One of the earliest proposals for such a phase was the chiral spin liquid put forward by Kalmeyer and Laughlin in 1987 as the bosonic analogue of the fractional quantum Hall effect. Elusive for many years, recent times have finally seen a number of models that realize this phase. However, these models are somewhat artificial and unlikely to be found in realistic materials. Here, we take an important step towards the goal of finding a chiral spin liquid in nature by examining a physically motivated model for a Mott insulator on the Kagome lattice with broken time-reversal symmetry. We first provide a theoretical justification for the emergent chiral spin liquid phase in terms of a network model perspective. We then present an unambiguous numerical identification and characterization of the universal topological properties of the phase, including ground state degeneracy, edge physics, and anyonic bulk excitations, by using a variety of powerful numerical probes, including the entanglement spectrum and modular transformations.Comment: 9 pages, 9 figures; partially supersedes arXiv:1303.696

    Classical simulation of quantum many-body systems with a tree tensor network

    Get PDF
    We show how to efficiently simulate a quantum many-body system with tree structure when its entanglement is bounded for any bipartite split along an edge of the tree. This is achieved by expanding the {\em time-evolving block decimation} simulation algorithm for time evolution from a one dimensional lattice to a tree graph, while replacing a {\em matrix product state} with a {\em tree tensor network}. As an application, we show that any one-way quantum computation on a tree graph can be efficiently simulated with a classical computer.Comment: 4 pages,7 figure

    Genralized Robustness of Entanglement

    Full text link
    The robustness of entanglement results of Vidal and Tarrach considered the problem whereby an entangled state is mixed with a separable state so that the overall state becomes non-entangled. In general it is known that there are also cases when entangled states are mixed with other entangled states and where the sum is separable. In this paper, we treat the more general case where entangled states can be mixed with any states so that the resulting mixture is unentangled. It is found that entangled pure states for this generalized case have the same robustness as the restricted case of Vidal and Tarrach.Comment: Final version. Editorial changes and references added to independent wor

    Equivalence of critical scaling laws for many-body entanglement in the Lipkin-Meshkov-Glick model

    Get PDF
    We establish a relation between several entanglement properties in the Lipkin-Meshkov-Glick model, which is a system of mutually interacting spins embedded in a magnetic field. We provide analytical proofs that the single-copy entanglement and the global geometric entanglement of the ground state close to and at criticality behave as the entanglement entropy. These results are in deep contrast to what is found in one- dimensional spin systems where these three entanglement measures behave differently.Comment: 4 pages, 2 figures, published versio

    Entanglement entropy in collective models

    Full text link
    We discuss the behavior of the entanglement entropy of the ground state in various collective systems. Results for general quadratic two-mode boson models are given, yielding the relation between quantum phase transitions of the system (signaled by a divergence of the entanglement entropy) and the excitation energies. Such systems naturally arise when expanding collective spin Hamiltonians at leading order via the Holstein-Primakoff mapping. In a second step, we analyze several such models (the Dicke model, the two-level BCS model, the Lieb-Mattis model and the Lipkin-Meshkov-Glick model) and investigate the properties of the entanglement entropy in the whole parameter range. We show that when the system contains gapless excitations the entanglement entropy of the ground state diverges with increasing system size. We derive and classify the scaling behaviors that can be met.Comment: 11 pages, 7 figure

    Exciton dynamics in WSe2 bilayers

    Full text link
    We investigate exciton dynamics in 2H-WSe2 bilayers in time-resolved photoluminescence (PL) spectroscopy. Fast PL emission times are recorded for both the direct exciton with Ď„D\tau_{D} ~ 3 ps and the indirect optical transition with Ď„i\tau_{i} ~ 25 ps. For temperatures between 4 to 150 K Ď„i\tau_{i} remains constant. Following polarized laser excitation, we observe for the direct exciton transition at the K point of the Brillouin zone efficient optical orientation and alignment during the short emission time Ď„D\tau_{D}. The evolution of the direct exciton polarization and intensity as a function of excitation laser energy is monitored in PL excitation (PLE) experiments.Comment: 4 pages, 3 figure

    Symmetric Periodic Solutions of the Anisotropic Manev Problem

    Get PDF
    We consider the Manev Potential in an anisotropic space, i.e., such that the force acts differently in each direction. Using a generalization of the Poincare' continuation method we study the existence of periodic solutions for weak anisotropy. In particular we find that the symmetric periodic orbits of the Manev system are perturbed to periodic orbits in the anisotropic problem.Comment: Late
    • …
    corecore