8 research outputs found

    Investigating the epigenetic discrimination of identical twins using buccal swabs, saliva, and cigarette butts in the forensic setting

    Get PDF
    Monozygotic (MZ) twins are typically indistinguishable via forensic DNA profiling. Recently, we demonstrated that epigenetic differentiation of MZ twins is feasible; however, proportions of twin differentially methylated CpG sites (tDMSs) identified in reference-type blood DNA were not replicated in trace-type blood DNA. Here we investigated buccal swabs as typical forensic reference material, and saliva and cigarette butts as commonly encountered forensic trace materials. As an analog to a forensic case, we analyzed one MZ twin pair. Epigenome-wide microarray analysis in reference-type buccal DNA revealed 25 candidate tDMSs with >0.5 twin-to-twin differences. MethyLight quantitative PCR (qPCR) of 22 selected tDMSs in trace-type DNA revealed in saliva DNA that six tDMSs (27.3%) had >0.1 twin-to-twin differences, seven (31.8%) had smaller (<0.1) but robustly detected differences, whereas for nine (40.9%) the differences were in the opposite direction relative to the microarray data; for cigarette butt DNA, results were 50%, 22.7%, and 27.3%, respectively. The discrepancies between reference-type and trace-type DNA outcomes can be explained by cell composition differences, method-to-method variation, and other technical reasons including bisulfite conversion inefficiency. Our study highlights the importance of the DNA source and that careful characterization of biological and technical effects is needed before epigenetic MZ twin differentiation is applicable in forensic casework

    Validated inference of smoking habits from blood with a finite DNA methylation marker set

    Get PDF
    Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epidemiological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an independent population-based cohort (

    Differentially methylated embryonal Fyn-associated substrate (EFS) gene as a blood-specific epigenetic marker and its potential application in forensic casework

    No full text
    DNA methylation patterns have the ability to reveal the activities of genes within a certain tissue at a particular time point. Tissue-specific DNA methylation patterns have been previously investigated for their applicability in the identification of forensically relevant body fluids, however there is still a lack in robust markers. While following a genome-wide scale investigation has a great potential to reveal useful tissue-specific changes, a gene-targeted approach can also lead to significant outcomes, especially in genomic locations not included in the genome-wide experiments. In this study, the potential of the candidate embryonal Fyn-associated substrate (EFS) gene for the positive identification of whole blood was investigated. For this purpose, the methylation profile of a selected genomic region containing a total of 10 CpG sites was analysed in 124 individuals via bisulfite pyrosequencing. Volunteers donated various forensically relevant tissues, including whole blood, saliva, seminal fluid, vaginal fluid and menstrual secretion. Whole blood showed the highest levels of DNA methylation (mean = 0.67), while semen samples were found to be very low methylated (mean = 0.06). The remaining tissues demonstrated partial mean methylation levels; more specifically, saliva − 0.43, vaginal fluid − 0.22 and menstrual blood − 0.22. One out of the 10 analysed CpG sites, CpG4, showed to be more robust, resulting in not only the highest methylation difference between blood and the rest of the tissues, but also the lowest inter-individual methylation difference. The proposed pyrosequencing assay was found to be accurate, linear and reproducible. Lastly, the method's applicability to forensic casework was assessed via the analysis of very old bloodstains stored up to 18 years, blood DNA samples stored long-term up to 9 years, mixed stains as well as other ‘forensic-like’ samples. In the majority of cases the expected methylation ratios were obtained indicating a stable DNA methylation pattern, however caution is necessary when analysing low quantity and/or quality samples due to potential stochastic effects. Future validation experiments can shed more light into the usefulness of EFS locus as a promising blood-specific epigenetic marker

    Revisiting genetic artifacts on DNA methylation microarrays exposes novel biological implications

    Get PDF
    Background: Illumina DNA methylation microarrays enable epigenome-wide analysis vastly used for the discovery of novel DNA methylation variation in health and disease. However, the microarrays’ probe design cannot fully consider the vast human genetic diversity, leading to genetic artifacts. Distinguishing genuine from artifactual genetic influence is of particular relevance in the study of DNA methylation heritability and methylation quantitative trait loci. But despite its importance, current strategies to account for genetic artifacts are lagging due to a limited mechanistic understanding on how such artifacts operate. Results: To address this, we develop and benchmark UMtools, an R-package containing novel methods for the quantification and qualification of genetic artifacts based on fluorescence intensity signals. With our approach, we model and validate known SNPs/indels on a genetically controlled dataset of monozygotic twins, and we estimate minor allele frequency from DNA methylation data and empirically detect variants not included in dbSNP. Moreover, we identify examples where genetic artifacts interact with each other or with imprinting, X

    Estimating the Time Since Deposition of Saliva Stains With a Targeted Bacterial DNA Approach

    Get PDF
    Information on the time when a stain was deposited at a crime scene can be valuable in forensic investigations. It can link a DNA-identified stain donor with a crime or provide a post-mortem interval estimation in cases with cadavers. The available methods for estimating stain deposition time have limitations of different types and magnitudes. In this proof-of-principle study we investigated for the first time the use of microbial DNA for this purpose in human saliva stains. First, we identified the most abundant and frequent bacterial species in saliva using publicly available 16S rRNA gene next generation sequencing (NGS) data from 1,848 samples. Next, we assessed time-dependent changes in 15 identified species using de-novo 16S rRNA gene NGS in the saliva stains of two individuals exposed to indoor conditions for up to 1 year. We selected four bacterial species, i.e., Fusobacterium periodonticum, Haemophilus parainfluenzae, Veillonella dispar, and Veillonella parvula showing significant time-dependent changes and developed

    A collaborative EDNAP exercise on SNaPshot™-based mtDNA control region typing

    No full text
    A collaborative European DNA Profiling (EDNAP) Group exercise was undertaken to assess the performance of an earlier described SNaPshot™-based screening assay (denoted mini-mtSNaPshot) (Weiler et al., 2016) [1] that targets 18 single nucleotide polymorphism (SNP) positions in the mitochondrial (mt) DNA control region and allows for discrimination of major European mtDNA haplogroups. Besides the organising laboratory, 14 forensic genetics laboratories were involved in the analysis of 13 samples, which were centrally prepared and thoroughly tested prior to shipment. The samples had a variable complexity and comprised straightforward single-source samples, samples with dropout or altered peak sizing, a point heteroplasmy and two-component mixtures resulting in one to five bi-allelic calls. The overall success rate in obtaining useful results was high (97.6%) given that some of the participating laboratories had no previous experience with the typing technology and/or mtDNA analysis. The majority of the participants proceeded to haplotype inference to assess the feasibility of assigning a haplogroup and checking phylogenetic consistency when only 18 SNPs are typed. To mimic casework procedures, the participants compared the SNP typing data of all 13 samples to a set of eight mtDNA reference profiles that were described according to standard nomenclature (Parson et al., 2014) [2], and indicated whether these references matched each sample or not. Incorrect scorings were obtained for 2% of the comparisons and derived from a subset of the participants, indicating a need for training and guidelines regarding mini-mtSNaPshot data interpretation

    From forensic epigenetics to forensic epigenomics: broadening DNA investigative intelligence

    No full text
    corecore