
Vol.:(0123456789)1 3

European Journal of Epidemiology 
https://doi.org/10.1007/s10654-019-00555-w

METHODS

Validated inference of smoking habits from blood with a finite DNA 
methylation marker set

Silvana C. E. Maas1,2 · Athina Vidaki2 · Rory Wilson3,4 · Alexander Teumer5,6 · Fan Liu2,7,8 · Joyce B. J. van Meurs1,9 · 
André G. Uitterlinden1,9 · Dorret I. Boomsma10 · Eco J. C. de Geus10 · Gonneke Willemsen10 · Jenny van Dongen10 · 
Carla J. H. van der Kallen11,12 · P. Eline Slagboom13 · Marian Beekman13 · Diana van Heemst14 · 
Leonard H. van den Berg15 · BIOS Consortium · Liesbeth Duijts16 · Vincent W. V. Jaddoe1,17,18 · Karl‑Heinz Ladwig4 · 
Sonja Kunze3,4 · Annette Peters3,4,19,20 · M. Arfan Ikram1 · Hans J. Grabe21 · Janine F. Felix1,17,18 · 
Melanie Waldenberger3,4,19 · Oscar H. Franco1 · Mohsen Ghanbari1,22 · Manfred Kayser2

Received: 4 May 2019 / Accepted: 22 August 2019 
© The Author(s) 2019

Abstract
Inferring a person’s smoking habit and history from blood is relevant for complementing or replacing self-reports in epide-
miological and public health research, and for forensic applications. However, a finite DNA methylation marker set and a 
validated statistical model based on a large dataset are not yet available. Employing 14 epigenome-wide association studies 
for marker discovery, and using data from six population-based cohorts (N = 3764) for model building, we identified 13 CpGs 
most suitable for inferring smoking versus non-smoking status from blood with a cumulative Area Under the Curve (AUC) 
of 0.901. Internal fivefold cross-validation yielded an average AUC of 0.897 ± 0.137, while external model validation in an 
independent population-based cohort (N = 1608) achieved an AUC of 0.911. These 13 CpGs also provided accurate infer-
ence of current (average AUC crossvalidation 0.925 ± 0.021, AUC externalvalidation0.914), former (0.766 ± 0.023, 0.699) and never 
smoking (0.830 ± 0.019, 0.781) status, allowed inferring pack-years in current smokers (10 pack-years 0.800 ± 0.068, 0.796; 
15 pack-years 0.767 ± 0.102, 0.752) and inferring smoking cessation time in former smokers (5 years 0.774 ± 0.024, 0.760; 
10 years 0.766 ± 0.033, 0.764; 15 years 0.767 ± 0.020, 0.754). Model application to children revealed highly accurate infer-
ence of the true non-smoking status (6 years of age: accuracy 0.994, N = 355; 10 years: 0.994, N = 309), suggesting prenatal 
and passive smoking exposure having no impact on model applications in adults. The finite set of DNA methylation markers 
allow accurate inference of smoking habit, with comparable accuracy as plasma cotinine use, and smoking history from blood, 
which we envision becoming useful in epidemiology and public health research, and in medical and forensic applications.
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Introduction

Several studies suggest that tobacco smoking impacts the 
human epigenome, particularly by changing DNA methyla-
tion patterns [1, 2]. DNA methylation is catalyzed by DNA 
methyltransferases (DNMT’s); the carcinogens in cigarette 
smoke cause double-strand DNA breaks and the DNA repair 
sites recruit DNMT1 [3], which methylates cytosines in 
CpGs adjacent to the repaired nucleotides [4]. Nicotine was 
shown to down-regulate DNMT1, and mRNA and protein 
expression [5]. Furthermore, cigarette smoke condensate 
increases expression of Sp1, a transcription factor that binds 
to GC-rich motifs in gene promoters, preventing de novo 
methylation [6–9]. In recent years, various epigenome-wide 
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association studies (EWASs) have provided a long list of 
CpGs significantly associated with tobacco smoking habits 
in blood [10]. Although there are strong smoking associa-
tions across the epigenome, some studies suggest that after 
smoking cessation, DNA methylation patterns can return 
back to those found in never smokers [11, 12].

Smoking is a well-known risk factor for the development 
of several diseases [13, 14]. Therefore, studies that investi-
gate smoking and its effect on mortality and morbidity rely 
on accurate assessments of smoking exposure. These studies 
use mainly self-reported smoking questionnaires to collect 
this information, which could result in underestimation and 
misrepresent the degree of the true smoking exposure [15]. 
In particular, it is possible that specific groups of partici-
pants, for instance pregnant women, are more reluctant to 
confide that they smoke [16]. Hence, the ability to reliably 
and accurately infer a person’s smoking habit from blood 
is relevant in epidemiology and public health research 
as well as in medical practice, because such an approach 
could complement, or even replace, self-reported smoking 
questionnaires.

Moreover, inference of a person’s smoking habit from 
blood traces found at crime scenes would allow the broaden-
ing of DNA investigative intelligence beyond the currently 
considered parameters of appearance, bio-geographic ances-
try and age, thus helping to better find unknown perpetrators 
of crime who are not identifiable via standard forensic DNA 
profiling [17]. Blood-based toxicological tests for measure-
ment of tobacco exposure exist; however, they assess current 
and acute, rather than habitual, smoking [18]. In addition, 
biomarkers used include nicotine itself or its metabolite 
cotinine, and their accurate detection of current smokers 
is affected by their short half-lives (2–3 h vs. 15–19 h for 
nicotine and cotinine, respectively) and individual variation 
in metabolic rates [19]. Therefore, when using the cotinine-
based approach false-negatives can be easily obtained, and 
also false-positives may occur in former smokers that use 
nicotine replacement therapy [20]. Given these constrains 
of current toxicology blood measures, and considering the 
recent progress in understanding the impact of smoking on 
epigenetic variation, we envision DNA methylation from 
blood as a promising approach for long-term habitual smok-
ing behaviour.

Although progress has been made in understanding the 
epigenetic impact of smoking [1], only a limited number of 
studies have explored the inference of smoking habits from 
blood with DNA methylation markers, albeit with various 
limitations such as small sample size, limited validation, 
restricting to smokers and non-smokers and not consider-
ing former smokers in the model building, and/or utilizing 
large numbers of CpGs [21–27]. Reliable studies on the 
validated inference of a person’s smoking habits and history 
from blood with a finite set of DNA methylation markers and 

based on statistical models with large underlying data are 
not available as of yet. A finite number of DNA methylation 
markers achieving maximal prediction accuracy would be 
especially beneficial for those practical applications where—
due to limited DNA quality and quantity, a common problem 
in forensics—it is impossible to apply standard DNA meth-
ylation microarray technology [17].

With this study, we aimed to identify a robust, finite set 
of DNA methylation markers in blood and, based on this 
finite biomarker set, develop accurate, reliable and validated 
statistical models for inferring a person’s tobacco smoking 
habits and history from blood, which we envision becoming 
useful in future epidemiology and public health research as 
well as medical and forensic applications.

Materials and methods

Study population

This study was embedded within the Biobank-based Inte-
grative Omics Study (BIOS) Consortium [28], which con-
sists of six Dutch cohorts (N = 3118), including the Rot-
terdam Study (RS) (N = 584) [29], Cohort on Diabetes and 
Atherosclerosis Maastricht (CODAM) (N = 156) [30], The 
Netherlands Twin Register (NTR) (N = 894) [31], Leiden 
Longevity Study (LLS) (N = 625) [32], Prospective ALS 
Study Netherlands (PAN) (N = 167) [33] and LifeLines (LL) 
(N = 692) [34]. Additionally, we included another 646 unre-
lated participants from the Rotterdam Study (RS-III-1) not 
included in BIOS. We externally validated our model in the 
Kooperative Gesundheitsforschung in der Region Augsburg 
(KORA) study (F4, N = 1608) [35], as well as in the Study 
of Health in Pomerania (SHIP)-Trend (N = 244) [36] cohort. 
Characteristics of all cohorts used can be found in Online 
Resource 1: Table S1. We additionally tested our model in 
samples from children included in the Generation R Study 
[37], in particular, we used data from children participating 
at birth (N = 1111), at the age of 6 years (N = 355), and at the 
age of 10 years (N = 309), of which 197 overlapped between 
all three time points, providing longitudinal data (Online 
Resource 1: Table S2). The smoking status information was 
obtained using questionnaires. The study characteristics 
are described in detail in Online Resource 2: Supplemental 
methods.

DNA methylation quantification

DNA was extracted from whole peripheral blood in all stud-
ies using standard procedures. All studies used the Illumina 
Infinium Human Methylation 450 K BeadChip (Illumina 
Inc, San Diego, CA, USA) for epigenome-wide DNA meth-
ylation measurements, except the SHIP-Trend study, which 
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used the more recent Infinium MethylationEPIC BeadChip 
(Illumina Inc, San Diego, CA, USA). DNA methylation data 
pre-processing for cohorts included in the BIOS consortium 
were conducted together via the pipeline created by Tobi 
et al. [38, 39]. The DNA methylation data pre-processing in 
the external validation cohorts and the Generation R Study 
were done independently. The methylation proportion of a 
CpG site was reported as a methylation β-value in the range 
of 0 (representing completely non-methylated sites) to 1 
(representing completely methylated sites). Further study-
specific methods can be found in Online Resource 2: Sup-
plemental methods.

Ascertainment of smoking‑associated CpGs

EWASs using the Illumina Infinium Human Methylation 
27 K or 450 K BeadChip investigating smoking-induced 
changes in DNA methylation patterns were reviewed [2, 21, 
40–50]. We excluded studies [11] that used cohorts included 
in our model-building dataset, to avoid over-estimation of 
our model. Envisioning future laboratory tool development, 
we only selected robust CpGs that were (1) highlighted in 
two or more studies, (2) with at least 10% difference in mean 
or median (depending on availability per EWAS) β-values 
between current smokers and never-smokers (or non-smok-
ers when non-smoking data was available) in at least one 
of the studies, and (3) with the same direction in β-value 
difference between current smokers and never/non-smokers 
in all studies investigated.

Statistical modeling for current smoking habits

Of the total participants considered for model building 
 (Ntotal = 5178), we excluded those with (1) missing data for 
smoking habits (1206 participants), (2) missing β-values for 
the predictive CpGs (82 participants), or (3) extreme outliers 
for one or more CpGs (mean ± 4 SD) (126 participants). In 
the end, we included 3764 participants in the final model 
building set, who were then categorized based on their 
smoking habits as (1) current smokers or (2) former and 
never smokers combined. The association between the can-
didate CpGs and smoking habits (smokers vs. non-smokers) 
was replicated in our model building dataset using binomial 
regression analysis adjusted for age and sex using the “glm” 
function with “binomial” as family and “logit” as link. To 
identify the most informative set of DNA methylation pre-
dictors from the candidate CpGs, the association between 
the complete set of predictive CpGs and smoking habits 
was assessed in a binary logistic regression analysis, using 
the “glm” function with “binomial” as family and “logit” 
as link. Backward elimination procedures were used for the 
marker selection process. We excluded the CpGs one by one 
based on their absolute z-statistic per regression (calculated 

by dividing the regression coefficient by its standard error) 
assessed using the “VarImp” function (r-package “caret”). 
The predictive CpG with the lowest absolute z-statistic in the 
regression was removed. The model was applied to the data-
set with the “predict” function (type = “response”) and the 
confusion matrix (r-package “caret”) was conducted using 
a probability threshold of 0.5. The prediction performance 
of the model was additionally assessed using “prediction” 
and “performance” (r-package “ROCR”), the Area Under the 
Curve (AUC) per model was calculated (r-package “ROCR”) 
and a cumulative AUC profile was conducted for each model 
to obtain a cumulative AUC profile. We selected the best-fit 
prediction model using a combination of the backward elim-
ination approach and the Chi squared test. In particular, we 
compared the model including all CpGs  (modelFULL) with 
the model excluding one CpGs,  (modelFULL-1CpG), this model 
FULL-1CpG was then compared with the model excluding 
another CpG  (modelFULL-2CpGs), following the same order 
as conducted via the backward approach, and so on until 
we noticed a statistically significant difference between two 
models in the backward approach. Subsequently, we tested 
the inclusion of age, sex and cell counts to the final model.

Former smokers as additional category

Participants included in the model building dataset 
(N = 3764) without additional smoking data, including the 
age someone stopped smoking (former smokers) or the 
age someone started smoking or the number of cigarettes 
someone smokes per day (current smokers), were excluded, 
resulting in a dataset including 2939 participants. The asso-
ciation between the previously selected predictive CpGs and 
the three smoking categories was assessed in a multinomial 
regression analysis, using the “multinom” function (r-pack-
age “nnet”). We predicted the smoking categories using the 
“predict” function (type = “class”) and the confusion matrix 
(r-package “caret”) was conducted. The AUC per category 
was conducted using the “predict” function (type = “probs”) 
and “roc” function (r-package “pROC”).

Smoking cessation time inference in former smokers

In the former smokers (N = 1332), smoking cessation time 
was calculated as one’s age minus the age one stopped 
smoking. The participants were split into two categories for 
three models. For model 1, ≥ 5 years cessation time were 
coded as “1” and < 5 years smoking cessation were coded 
as “0”, for model 2, ≥ 10 years cessation time were coded 
as “1” and < 10 years smoking cessation were coded as “0”, 
and for model 3, ≥ 15 years cessation time were coded as 
“1” and < 15 years smoking cessation were coded as “0”. 
The predictions were conducted using the same method 
as described for the current versus non-smokers model. 
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Probability thresholds were set to 0.8733, 0.7650 and 0.6397 
respectively.

Pack‑year inference in current smokers

For the current smokers (N = 364) the pack-years were cal-
culated as the number of cigarettes smoked per day divided 
by 20, multiplied by the total years of smoking. The partici-
pants were categorized into two categories for two models. 
For model 1, ≥ 15 pack-years were coded as “1” and < 15 
pack-years coded as “0”, for model 2, ≥ 10 pack-years were 
coded as “1” and < 10 pack-years coded as “0”. The predic-
tions were conducted using the same method as described 
for the current vs non-smokers model.

Pack‑years (current‑), smoking cessation time 
(former‑) and never smokers

We combined the pack-year inference in current smokers 
with the cessation time in former and never smokers, result-
ing into five categories in two models (N = 2939) for infer-
ring life-time smoking information. For model 1, the cur-
rent smokers ≥ 15 pack-years were coded as “5”, with < 15 
pack-years were coded as “4”, the former smokers ≤ 10 years 
smoking cessation were coded as “3”, with > 10 years smok-
ing cessation were coded as “2” and never smokers were 
coded as “1”. In the second model the same categories were 
used except for the pack-years which were now divided in 
≥ 10 pack-years (coded as “5”) and < 10 pack-years (coded 
as “4”). The predictions were conducted using the same 
method as described for the current vs former vs never smok-
ers model.

Internal validation of the developed prediction 
models

For internal validation of the developed predictive mod-
els, we adopted a fivefold cross-validation scheme [51], in 
which the whole dataset is first randomly distributed into 
five equal and non-overlapping subsets. Four of the subsets 
(80% of the data) are combined to form a dataset used to 
train the logistic regression model which is then tested by 
inferring the smoking habits in the remaining dataset (20% 
of the data). This resulted in five different training (80%) and 
testing (20%) sets. The model was trained in the five train-
ing sets and applied to corresponding testing sets, resulting 
in five logistic regression models. Subsequently, we used 
the bootstrap method (r-packages “boot” and “parallel”) as 
additional internal validation to correct for potential over-
estimation of the prediction, since we use the same data for 
model building and predictions. We generated 1000 boot-
strap samples, with replacement from the dataset for which 
we estimated the model and applied each fitted model to the 

original sample, resulting in 1000 AUC estimates. Thereaf-
ter, we recalculated the prediction accuracy by applying the 
fitted model to the bootstrap sample itself. The performance 
in the bootstrap sample represents an estimation of the 
apparent performance, and the performance in the original 
sample represents test performance. The difference between 
the average of the two conducted AUCs is a stable estimate 
of the optimism. We corrected for prediction overestima-
tion by subtracting the optimism from the apparent AUC, to 
obtain an improved estimate of the prediction AUC [52, 53].

External validation of the developed prediction 
models

We externally validated our prediction models in two inde-
pendent cohorts from German-European origin. The full 
models were validated in the KORA F4 study (N = 1608). 
Additionally, we externally validated our models in the 
SHIP-Trend study (N = 244). In this cohort, the EPIC meth-
ylation array was used which does not include all CpGs of 
the 450 K array. We therefore first generated the prediction 
models based on the overlapping CpGs in the model build-
ing dataset and subsequently externally validated them in 
the SHIP-Trend dataset.

Comparing performance of CpG‑based model 
with cotinine level cut‑off

We compared the outcomes of the CpG model to infer cur-
rent vs non-smokers with the outcomes using a cotinine level 
cut-off of 50 ng/mL [54, 55] and applied smoking informa-
tion from self-reports as reference. We employed a subset 
of our model building dataset (N = 488 participants included 
in NTR [56]) in which both DNA methylation levels and 
cotinine levels were available. First, participants were cat-
egorized as smokers when their plasma cotinine levels were 
> 50 ng/mL, or as non-smokers with cotinine levels ≤ 50 ng/
mL, threshold according to previous studies including the 
used cotinine data [54, 55]. Second, the current versus non-
smokers CpG model was applied to this subset, obtaining the 
inferred smoking status for the participants. Third, we com-
pared the obtained smoking status for both models with the 
information obtained from the self-reported questionnaires 
and computed the sensitivity and specificity per model.

Application of the developed prediction model 
in newborns and young children

Studies have shown the impact of prenatal smoking expo-
sure on the DNA methylation pattern of the offspring [57] 
and the ability of predicting maternal smoking status using 
these patterns [58]. In this context, we wanted to test the 
effect of prenatal exposure on model application in adults. 
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Hence, when an adult does not smoke, but was exposed to 
prenatal smoking, do we predict this person indeed as a true 
non-smoker? To test for this putative impact of exposure to 
prenatal smoking on epigenetic inference of smoking hab-
its using our model, we tested our model in umbilical cord 
blood of newborns (N = 1111), and in whole blood of chil-
dren at the ages of six (N = 355) and 10 years (N = 309). We 
used five different analyses to evaluate the effects of active 
smoking of the mothers and passive smoking of the moth-
ers (i.e. smoking of others in the mother’s home and work 
environment) during pregnancy on smoking habit inference 
using our model. In our first analysis, we did not take the 
smoking habits of the pregnant mothers or others in the 
pregnant mother’s home and work environment into account 
and all children were coded as non-smokers. The proportion 
of accurately predicted cases was calculated using a prob-
ability threshold of 0.5. In each of the following analyses, we 
coded the children “1” if their parents met the smoking habit 
criteria, otherwise they were coded as “0”. So, in the second 
analysis, only sustained maternal smoking throughout preg-
nancy was considered. Therefore, the children of mothers 
that smoked during the whole pregnancy were coded as “1”. 
In the third analysis, we additionally included the children of 
mothers who stopped smoking when they realized that they 
were pregnant by coding these children as “1”. In the fourth 
analysis, we additionally included smoking of the father 
and/or others in the mother’s household/at work (> 1 h per 
day) during pregnancy (i.e. passive smoking). In the fifth 
analysis, we assessed the sole effect of passive smoking i.e., 
where the mother did not smoke but the father or someone 
else in the house or at work (> 1 h per day) smoked during 
the pregnancy of the mother. For 197 children, DNA meth-
ylation levels were measured at all three time points, i.e. 
birth, 6 years of age and 10 years of age; hence, we repeated 
the previous models again in these children to allow a direct 
comparison of the findings at these three time points in the 
same individuals.

Results

Ascertaining candidate DNA methylation markers 
for inferring smoking habits from blood

We inspected 14 published EWASs on tobacco smoking 
habits  (Ntotal = 7015) [2, 21, 40–50] to identify smoking-
associated CpGs as candidate DNA methylation markers for 
prediction modeling of smoking habits. CpGs were selected 
as candidate prediction markers if they met three criteria 
as mentioned in the method section. This procedure high-
lighted 20 top smoking-associated CpGs as candidate mark-
ers used for further analyses (Table 1). The differences in 
β-values between smokers and never-/non-smokers reported 

previously for these 20 top smoking-associated CpGs are 
illustrated in Fig. 1.

Building CpG‑based models for inferring smoking 
habit and history from blood

Following the replication of the association between the 
CpGs and smoking habits (smokers vs. non-smokers) 
after adjusting for age and sex (Online source Table 3), we 
assessed the predictive effect of the selected 20 candidate 
markers in the model building dataset (N = 3764). Starting 
with a model including all 20 CpGs, the CpG with the lowest 
z-value per model was sequentially removed, and the AUC 
was calculated for each model to obtain a cumulative AUC 
profile (Table 1; Fig. 2).

To identify the minimal number of CpGs required to 
achieve maximum prediction accuracy, we additionally 
used Chi squared tests. Applying this backward approach, 
the first significant difference between two models was 
noted when we compared the model with and without 
cg09935388 (Table 1; Fig. 2). The combined marker elimi-
nation approach resulted in a finite set of DNA methylation 
markers comprising 13 CpGs (Table 1; Fig. 2). The AUC for 
the identified 13-CpG model was 0.901 for distinguishing 
between smokers versus non-smokers (for other prediction 
accuracy measures, see Table 2). The remaining 7 CpGs 
raised the cumulative AUC only on the 4th decimal i.e. from 
0.9010 to 0.9016 (Table 1; Fig. 2). Hence, this finite set 
of 13 CpGs was used for subsequent prediction modeling. 
Using the 13-CpG model, we inferred the smoking status of 
the participants included in our model building dataset; the 
inferred probabilities are presented in a histogram in Fig. 3, 
where each probability bin is overlaid with the percentage of 
accurately inferred smoking habits in that probability range.

Adjusting the prediction model for age resulted in a minor 
AUC increase from 0.901 to 0.907, adjusting for sex from 
0.901 to 0.903 and including both age and sex in the model 
increased the AUC slightly from 0.901 to 0.911 (Online 
Resource 1: Table S4). Additionally, we tested the influ-
ence of cell counts on the model accuracy. In the subset of 
participants for which cell count measures were available 
(N = 3402), our 13-CpG model without cell counts achieved 
an AUC of 0.906. Including the cell count measurements for 
monocytes, granulocytes and lymphocytes in our 13-CpG 
model, the AUC was almost identical at 0.907 (Online 
Resource 1: Table S5). Since age, sex and cell counts only 
had a minor impact on the prediction accuracy, these three 
non-epigenetic factors were not considered in the final model 
used in the subsequent analyses.

Next, we considered former smokers as an additional, 
separate category in the prediction model building based 
on the finite set of 13 CpGs, resulting in a three-category 
prediction model. To this end, we considered a subset of 
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2939 participants for which the relevant smoking habit 
information was available. We obtained for the current 
smokers (N = 364) an AUC of 0.928, for the former smok-
ers (N = 1332) 0.772, and for the never smokers (N = 1243) 
0.835 (for other accuracy measures, see Table 3). Addition-
ally, we calculated smoking cessation time for the former 
smokers (N = 1332), and used the 13-CpGs to infer smok-
ing cessation for ≥ 5 years (N = 1160) versus < 5 years 
(N = 172), which resulted in an AUC of 0.793, for ≥ 10 
versus < 10 years smoking cessation time (N = 1028 and 
N = 304, respectively) an AUC of 0.778 was obtained and 
for ≥ 15 versus < 15 years smoking cessation time (N = 887 
and N = 445, respectively) an AUC of 0.779 was obtained 
(Table 4).

Furthermore, for the current smokers (N = 364) we cal-
culated the pack-years (see methods) and used the 13 CpG 
markers to infer pack-years for ≥ 15 pack-years (N = 210) 
versus < 15 pack-years (N = 154), which resulted in an 
AUC of 0.815. For ≥ 10 versus < 10 pack-years (N = 246 
and N = 118, respectively) an AUC of 0.846 was obtained 
(Table 5).

Finally, we combined the pack-years in current smok-
ers, smoking cessation in former smokers with the never 
smokers (N = 2939) into one model for life-time smoking 

information inferring. We obtained for the current smok-
ers with ≥ 15 pack-years (N = 210) an AUC of 0.949, < 15 
pack-years (N = 154) an AUC of 0.869, in former smokers 
with ≤ 10 years smoking cessation (N = 311) an AUC of 
0.793, with > 10 years smoking cessation (N = 1021) an 
AUC of 0.739 and the never smokers (N = 1243) an AUC 
of 0.835 (Table 6). We obtained for the current smokers 
with ≥ 10 pack-years (N = 246) an AUC of 0.948, < 10 pack-
years (N = 118) an AUC of 0.863, former smokers with 
≤ 10 years smoking cessation (N = 311) an AUC of 0.794, 
with > 10 years smoking cessation (N = 1021) an AUC of 
0.739, and the never smokers (N = 1243) an AUC of 0.835 
(Table 6).

Validating CpG‑based models for inferring smoking 
habit and history from blood

We validated the newly developed prediction models based 
on the 13 selected CpGs via both internal and external vali-
dation procedures. Internal validation was carried out in 
the model building set using fivefold cross-validation and 
bootstrapping. For the two-category model (smokers vs. 
non-smokers), the optimism from bootstrap internal vali-
dation was 0.0032, resulting in a bootstrap-adjusted AUC 

Table 1  Top 20 smoking-
associated CpGs from 14 
previous EWASs considered 
here for marker sub-selection 
and their contribution to 
smoking inference from blood

NA not annotated to any gene according to the Illumina Infinium Human Methylation 450 K annotation file
AUC  Area under the curve
a CpGs included in our final 13 CpG-model
b Genome coordinates provided by Illumina (GRCh37/hg19)
c According to the Illumina Infinium Human Methylation 450 K annotation file

CpG ID Chr:positionb Gene  IDc Location of CpG Cumulative AUC 

cg05575921a 5:373,378 AHRR Gene body 0.8801
cg13039251a 5:32,018,601 PDZD2 Gene body 0.8888
cg03636183a 19:17,000,585 F2RL3 Gene body 0.8883
cg12803068a 7:45,002,919 MYO1G Gene body 0.8889
cg22132788a 7:45,002,486 MYO1G Gene body 0.8934
cg06126421a 6:30,720,080 NA – 0.8929
cg21566642a 2:233,284,661 NA – 0.8957
cg23576855a 5:373,299 AHRR Gene body 0.8967
cg15693572a 3:22,412,385 NA – 0.8982
cg05951221a 2:233,284,402 NA – 0.8989
cg01940273a 2:233,284,934 NA – 0.8998
cg12876356a 1:92,946,825 GFI1 Gene body 0.9005
cg09935388a 1:92,947,588 GFI1 Gene body 0.9010
cg19572487 17:38,476,024 RARA 5′UTR 0.9012
cg19859270 3:98,251,294 GPR15 Gene body (1st Exon) 0.9015
cg18146737 1:92,946,700 GFI1 Gene body 0.9015
cg21161138 5:399,360 AHRR Gene body 0.9015
cg23480021 3:22,412,746 NA – 0.9016
cg21188533 3:53,700,263 CACNA1D Gene body 0.9015
cg03274391 3:22,413,232 NA – 0.9015
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of 0.898 (0.901–0.0032), see Table 2 for other accuracy 
measures and cross-validation results. For the three-cate-
gory model (smokers vs. former smokers vs. never smokers) 
the bootstrap conducted optimisms are 0.0032 for current 
smokers, 0.0063 for former smokers and 0.0036 for never 
smokers resulting in bootstrap adjusted AUCs of 0.925 
(0.928–0.0032) for current smokers, 0.766 (0.772–0.0063) 
for former smokers and 0.831 (0.835–0.0036) for never 
smokers (Table 3). For the smoking cessation time inference 
in former smoker, (1) for ≥ 5 versus < 5 years smoking ces-
sation the bootstrap optimism was 0.0170 resulting in a boot-
strap-adjusted AUC of 0.776 (0.793–0.0170); (2) for ≥ 10 
versus < 10 years smoking cessation the bootstrap resulted 
in an optimism of 0.0112, giving a bootstrap-adjusted AUC 
of 0.767 (0.778–0.0112); (3) ≥ 15 versus < 15 years smoking 

cessation the bootstrap resulted in an optimism of 0.0096, 
giving a bootstrap-adjusted AUC of 0.769 (0.779–0.0096) 
(Table 4). For the two pack-year models, (1) the bootstrap 
optimism for ≥ 15 versus < 15 pack—was 0.029 resulting 
in a bootstrap-adjusted AUC of 0.786 (0.815–0.029); and 
(2) for ≥ 10 versus < 10 pack-years the bootstrap resulted 
in an optimism of 0.026, giving a bootstrap-adjusted AUC 
of 0.820 (0.846–0.026) (Table 5). Finally, for the life-time 
smoking information inferring, we obtained for ≥ 15 pack-
years a bootstrap optimism of 0.0034 resulting in a boot-
strap-adjusted AUC of 0.946 (0.949–0.0034), for < 15 pack-
years a bootstrap-adjusted AUC of 0.860 (0.869–0.0091), for 
≤ 10 smoking cessation a bootstrap-adjusted AUC of 0.782 
(0.793–0.0106), > 10 years smoking cessation a bootstrap 
optimism of 0.0075 resulting in a bootstrap-adjusted AUC 

Fig. 1  DNA methylation 
β-value differences between 
smokers and never-smokers 
for the top 20 smoking-associ-
ated CpGs. Previously reported 
differences in β-values in mean 
or median (depending on avail-
ability per EWAS) between 
smokers and never-smokers 
(¤ or non-smokers, when non-
smoking data was available) for 
the selected 20 top-associated 
CpGs obtained from the 14 
reviewed EWASs on smok-
ing habits that did not include 
samples used here for model 
building



 S. C. E. Maas et al.

1 3

of 0.732 (0.739–0.0075) and for never smokers a bootstrap-
adjusted AUC of 0.831 (0.835–0.0037) (Table 6). For the 
second five-category model, very similar results were 
obtained (Table 6).

External validation was performed in independ-
ent samples of two population-based studies, KORA 
and SHIP-Trend. In KORA (F4, N = 1608), an AUC of 
0.911 was achieved for the full 13-CpG two-category 
model (Table 2). In SHIP-Trend (N = 244), an AUC of 
0.888 was obtained for the two-category model based on 
a subset of ten CpGs, since the EPIC-array applied for 
SHIP-Trend is missing three of the 13 CpGs (cg06126421, 

cg22132788 and cg05951221). This 10-CpG model in the 
model building set gave a cross-validated average AUC 
of 0.893 ± 0.012 (Table  2). External validation of the 
three-category model in the KORA study (F4, N = 1608) 
achieved an AUC of 0.914 for the current smokers 
(N = 226), 0.699 for the former smokers (N = 707), and 
0.781 for the never smokers (N = 675) (Table 3). The three-
category model validation in SHIP-Trend for the 10-CpG 
model resulted in an AUC of 0.882 for current smokers 
(N = 51), 0.654 for former smokers (N = 92), and 0.778 
for never smokers (N = 101) (Table 3). For comparison, in 
the model building set, this three category 10-CpG model 

Fig. 2  Cumulative AUC 
profile for smoking habit 
inference from blood based on 
the top 20 CpGs. The 20 CpGs 
were selected from previous 
EWASs on smoking habits (see 
Fig. 1) and were tested in the 
model-building set (N = 3764). 
Presented is the cumulative con-
tribution of each of the selected 
20 CpGs to the model-based 
smoking habit inference, shown 
as the AUC plotted against the 
number of CpGs included in 
the binary logistic regression 
model. In the model selection 
process, first all CpGs were 
included, and using backward 
elimination procedures, those 
with the lowest z-statistic per 
model were removed one by 
one. After 13 CpGs, the AUC 
plateaus; therefore, and by 
considering the results from Chi 
squared testing, these 13 CpGs 
were used for further analyses
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gave a cross-validated average AUC of 0.919 ± 0.019 
for current smokers, 0.748 ± 0.023 for former smokers, 
and 0.823 ± 0.018 for never smokers (Table 3). External 
validation of smoking cessation time inference in for-
mer smokers in the KORA study (N = 652) resulted in an 
AUC of 0.760 for ≥ 5 versus < 5 years of smoking ces-
sation time, an AUC of 0.764 for ≥ 10 versus < 10 years 

of smoking cessation time, and of 0.754 for ≥ 15 versus 
< 15 years of smoking cessation time (Table 4). Further-
more, we externally validated the prediction of pack-years 
in the current smokers of the KORA study (F4, N = 224) 
and obtained an AUC of 0.752 for inferring ≥ 15 versus 
< 15 pack-years and an AUC of 0.796 for ≥ 10 versus 
< 10 pack-years (Table 5). The pack-year validation in the 

Table 2  Outcomes of the two-category-model (smokers vs. non-smokers) for inferring smoking habits from blood based on CpGs

Cross-validation analysis results are presented as mean ± standard deviation
AUC  Area under the curve
a Three CpGs (cg06126421, cg22132788 and cg05951221) are not included in the EPIC methylation microarray dataset from SHIP-Trend, this 
model is included here to demonstrate a second external validation in SHIP next to KORA with the full 13-CpG model
b Proportion accurately inferred smoking habits, 95% confidence interval (CI)

13-CpG model 10-CpG  modela

Model building data set (N = 3764) External validation Model building data set (N = 3764) External validation

Model building Fivefold cross-
validation

KORA (N = 1608) Model building Fivefold cross-
validation

SHIP-Trend 
(N = 244)

Accuracyb 
(95% 
CI) ± SD

0.923 (0.914, 0.931) 0.921 ± 0.008 0.926 (0.912, 
0.938)

0.917 (0.908, 
0.926)

0.917 ± 0.011 0.873 (0.825, 0.912)

Specificity 0.976 0.976 ± 0.005 0.983 0.975 0.975 ± 0.006 0.995
Sensitivity 0.585 0.577 ± 0.044 0.580 0.548 0.551 ± 0.042 0.412
AUC 0.901 0.897 ± 0.137 0.911 0.896 0.893 ± 0.012 0.888

Fig. 3  Inferred probability 
of being a smoker versus 
the percentage of correctly 
inferred smoking habits. 
Histogram of predicted prob-
abilities in our model building 
dataset (N = 3764), probabilities 
determined using the 13 CpGs 
included in the final prediction 
model. The y-axis presents 
the number of individuals for 
whom the predicted probability 
of being a smoker was within 
the given probability range 
(x-axis). The red dots present 
the percentage of individuals in 
each probability bin that were 
accurately inferred using a > 0.5 
probability threshold for being 
a smoker
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current smokers of SHIP-Trend (N = 41) for the 10-CpG 
model resulted in an AUC of 0.779 for ≥ 15 versus < 15 
pack-years (AUC of 0.757 ± 0.077 in the model building 
set) and an AUC of 0.837 for ≥ 10 versus < 10 pack-years 
(AUC of 0.809 ± 0.039 in the model building) (Table 5). 
The external validation of the five-category models in the 
KORA study resulted for the current smokers with ≥ 15 
pack-years in an AUC of 0.955, for < 15 pack-years an 
AUC of 0.710, for ≤ 10 years smoking cessation an AUC 
of 0.791, > 10 years smoking cessation an AUC of 0.650 
and for never smokers an AUC of 0.788. For the second 
five-category model, we obtained in the KORA study an 
AUC of 0.943 for ≥ 10 pack-years, of 0.694 for < 15 pack-
years, an AUC of 0.791 for ≤ 10 years smoking cessation, 

of 0.651 ≥ 10 years smoking cessation and an AUC of 
0.788 for never smokers (Table 6).

Comparing CpG‑based with cotinine‑based 
inference of smoking habit

In a subset of 488 participants for which we had CpG, 
cotinine and smoking information available, we com-
pared our validated CpG-based prediction model for cur-
rent versus non-smokers with the use of a cotinine cut-off 
to determine current smoking, using smoking information 
from self-reported questionnaires as reference. Using our 
CpG-model, we accurately inferred 87 of the 140 smokers 
and 344 of the 348 non-smokers (sensitivity of 0.621 and 
specificity of 0.989) compared to 105 of the 140 smokers 

Table 3  Outcomes of the three-category-model (current smokers vs. former smokers vs. never smokers) for inferring smoking habits from blood 
based on CpGs

Cross-validation analysis results are presented as mean ± standard deviation
AUC  Area under the Curve
a Three CpGs (cg06126421, cg22132788 and cg05951221) are not included in the EPIC methylation microarray dataset from SHIP-Trend

 Model building data set 
(N = 2939): model building 
13-CpG model

Never (N = 1243) Former (N = 1332) Current (N = 364)

Specificity 0.746 0.770 0.997
Sensitivity 0.780 0.652 0.668
AUC 0.835 0.772 0.928
Fivefold cross-validation
Specificity 0.739 ± 0.017 0.766 ± 0.053 0.975 ± 0.008
Sensitivity 0.769 ± 0.060 0.643 ± 0.039 0.669 ± 0.056
AUC 0.830 ± 0.019 0.766 ± 0.023 0.925 ± 0.021

External replication in KORA 
(N = 1608): 13-CpG model

Never (N = 675) Former (N = 707) Current (N = 226)

Specificity 0.539 0.870 0.980
Sensitivity 0.916 0.392 0.615
AUC 0.781 0.699 0.914

Model building data set 
(N = 2939): model building 
10-CpG  modela

Never (N = 1243) Former (N = 1332) Current (N = 364)

Specificity 0.749 0.737 0.974
Sensitivity 0.751 0.648 0.626
AUC 0.825 0.753 0.922
Fivefold cross-validation
Specificity 0.745 ± 0.013 0.735 ± 0.042 0.975 ± 0.010
Sensitivity 0.747 ± 0.050 0.645 ± 0.026 0.627 ± 0.025
AUC 0.823 ± 0.018 0.748 ± 0.023 0.919 ± 0.019

External replication in SHIP-Trend 
(N = 244): 10-CpG modela

Never (N = 101) Former (N = 92) Current (N = 51)

Specificity 0.490 0.822 0.990
Sensitivity 0.891 0.315 0.451
AUC 0.778 0.654 0.882
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and 342 of the 348 non-smokers using the cotinine level 
cut-off of 50 ng/mL (sensitivity of 0.750 and specificity 
of 0.983). Out of the 87 accurately inferred smokers with 
our CpG model, 75 (86%) were also accurately selected as 
smokers based on cotinine, and out of the 105 participants 
correctly selected with cotinine as smokers, 75 (71%) were 
accurately inferred as smokers with our CpG model. For 
the non-smokers, out of the 344 accurately inferred with 

our CpG model, 340 (99%) were also selected with cotinine 
as non-smokers, and 340 (99%) out of the 342 accurately 
selected non-smokers with cotinine, were accurately inferred 
as non-smokers with our CpG model. Finally, when com-
paring all three methods(questionnaires/cotinine levels/DNA 
methylation prediction), 340 participants were highlighted as 
non-smokers and 75 as smokers with all three methods, 12 
were selected as smokers based on questionnaires and DNA 

Table 4  Outcomes of the two-category models for inferring smoking history (years of cessation time) in former smokers from blood based on 13 
CpGs

Cross-validation analysis results are presented as mean ± standard deviation
AUC  Area under the curve
a Proportion accurately inferred smoking habits, 95% confidence interval (CI)

Former < 5 year versus Former ≥ 5 year 
cessation time

Former < 10 year versus Former ≥ 10 year 
cessation time

Former < 15 year versus For-
mer ≥ 15 year cessation time

Model building data set 
(N = 1332)

External 
validation

Model building data set 
(N = 1332)

External 
validation

Model building data set 
(N = 1332)

External 
valida-
tion

Model 
building

Fivefold 
cross-valida-
tion

KORA 
(N = 652)

Model 
building

Fivefold 
cross-valida-
tion

KORA 
(N = 652)

Model 
building

Fivefold 
cross-valida-
tion

KORA 
(N = 652)

Accuracya 
(95% 
CI) ± SD

0.725 
(0.700, 
0.749)

0.715 ± 0.020 0.830 
(0.799, 
0.858)

0.730 
(0.705, 
0.753)

0.721 ± 0.029 0.799 
(0.766, 
0.829)

0.732 
(0.707, 
0.756)

0.718 ± 0.016 0.759

Specificity 0.715 0.691 ± 0.090 0.494 0.694 0.682 ± 0.063 0.471 0.663 0.644 ± 0.033 0.449
Sensitivity 0.727 0.718 ± 0.026 0.879 0.740 0.733 ± 0.026 0.900 0.767 0.756 ± 0.015 0.902
AUC 0.793 0.774 ± 0.024 0.760 0.778 0.766 ± 0.033 0.764 0.779 0.767 ± 0.020 0.754

Table 5  Outcomes of model applications to infer smoking history (pack-years) in current smokers (N = 364) from blood based on CpGs

Cross-validation analysis results are presented as mean ± standard deviation
Pack-years were calculated as the number of cigarettes smoked per day divided by 20, multiplied by the total years of smoking
a Three CpGs (cg06126421, cg22132788 and cg05951221) are not included in the EPIC methylation microarray dataset from SHIP-Trend
b Proportion accurately inferred smoking habits; 95% CI, confidence interval; AUC, Area under the Curve

13-CpG model 10-CpG  modela

Model Building 
(N = 364)

Fivefold Cross-
validation

KORA F4 
(N = 224)

Model Building 
(N = 364)

Fivefold Cross-
validation

SHIP-Trend 
(N = 41)

More or less than 10 pack-years
Accuracy 

(95% 
CI)b

0.824 (0.781, 0.862) 0.783 ± 0.05 0.813 (0.755,  
0.861)

0.808 (0.76,  
0.847)

0.770 ± 0.035 0.805 (0.651, 
0.912)

Specificity 0.644 0.577 ± 0.131 0.343 0.602 0.548 ± 0.14 0.778
Sensitivity 0.911 0.882 ± 0.045 0.899 0.907 0.879 ± 0.046 0.813
AUC 0.846 0.800 ± 0.068 0.796 0.834 0.809 ± 0.039 0.837
More or less than 15 pack-years
Accuracy 

(95% 
CI)b

0.733 (0.685, 0.778) 0.719 ± 0.093 0.786 (0.726, 
0.838)

0.728 (0.679,  
0.773)

0.709 ± 0.059 0.659 (0.494, 
0.799)

Specificity 0.617 0.600 ± 0.204 0.455 0.597 0.575 ± 0.143 0.533
Sensitivity 0.819 0.805 ± 0.042 0.894 0.824 0.808 ± 0.035 0.731
AUC 0.815 0.767 ± 0.102 0.752 0.786 0.757 ± 0.077 0.779
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methylation inference, 30 as smokers with both question-
naires and cotinine, 2 were determined as smokers with both 
cotinine and DNA methylation inference, whereas 23 were 
determined as smokers with questionnaires only, 2 as smok-
ers with DNA methylation inference only, and 4 as smokers 
with cotinine only.

Investigating prenatal smoking exposure effects 
on CpG‑based inference of smoking habit

Next, we investigated the putative effect of prenatal smoking 
exposure and passive smoking on the epigenetic inference of 

smoking habits achievable with our validated model. When 
applying our model to the DNA methylation data at time of 
birth collected from cord blood, the proportion of children 
accurately inferred as non-smokers was surprisingly low at 
0.114 (N = 1111) (Online Resource 1: Table S6). We then 
classified children whose mothers smoked throughout preg-
nancy as “smokers”, and obtained an AUC of 0.773, with 
a high sensitivity of 0.981 and a low specificity of 0.131. 
The AUC decreased to 0.664 when additionally consider-
ing mothers who stopped smoking when they became aware 
of their pregnancy (generally in the first trimester), and 
decreased further to 0.591 when additionally considering 

Table 6  Outcomes of the five-category-model for inferring smoking habits and smoking history from blood based on 13 CpGs

Cross-validation analysis results are presented as mean ± standard deviation
AUC  area under the curve, F former smokers in years cessation time, PY pack-years

Never versus former > 10 years cessation time versus former ≤ 10 years cessation time versus < 15 pack-years versus ≥ 15 pack-years

 Model build-
ing data set 
(N = 2939)

Never (N = 1243) F > 10 year (N = 1021) F ≤ 10 year (N = 311) < 15PY (N = 154) ≥ 15PY (N = 210)

Specificity 0.712 0.777 0.979 0.987 0.967
Sensitivity 0.817 0.554 0.206 0.299 0.724
AUC 0.835 0.739 0.793 0.869 0.949
Fivefold cross-validation
Specificity 0.711 ± 0.022 0.775 ± 0.036 0.977 ± 0.009 0.984 ± 0.009 0.963 ± 0.014
Sensitivity 0.809 ± 0.047 0.545 ± 0.040 0.199 ± 0.042 0.274 ± 0.128 0.695 ± 0.064
AUC 0.832 ± 0.014 0.731 ± 0.026 0.779 ± 0.018 0.855 ± 0.046 0.947 ± 0.016

 External repli-
cation in KORA 
(N = 1551)

Never (N = 675) F > 10 year (N = 488) F ≤ 10 year (N = 164) < 15 PY (N = 55) ≥ 15PY (N = 169)

Specificity 0.534 0.830 0.994 0.994 0.979
Sensitivity 0.927 0.299 0.122 0.018 0.728
AUC 0.788 0.650 0.791 0.710 0.955

Never versus former > 10 years cessation versus former ≤ 10 years cessation versus < 10 pack-years versus ≥ 10 pack-years

 Model build-
ing data set 
(N = 2939)

Never (N = 1243) F > 10 year (N = 1021) F ≤ 10 year (N = 311) < 10 PY (N = 118) ≥ 10PY (N = 246)

Specificity 0.714 0.776 0.981 0.994 0.963
Sensitivity 0.817 0.554 0.193 0.220 0.772
AUC 0.835 0.739 0.794 0.863 0.948
Fivefold cross-validation
Specificity 0.709 ± 0.023 0.774 ± 0.034 0.980 ± 0.006 0.992 ± 0.003 0.960 ± 0.008
Sensitivity 0.808 ± 0.045 0.542 ± 0.042 0.194 ± 0.043 0.206 ± 0.066 0.758 ± 0.067
AUC 0.831 ± 0.014 0.730 ± 0.027 0.780 ± 0.018 0.847 ± 0.047 0.946 ± 0.023

 External repli-
cation in KORA 
(N = 1551)

Never (N = 675) F > 10 year (N = 488) F ≤ 10 year (N = 164) < 10 PY (N = 35) ≥ 10PY (N = 189)

Specificity 0.535 0.827 0.994 0.998 0.977
Sensitivity 0.926 0.299 0.110 0.000 0.683
AUC 0.788 0.651 0.791 0.694 0.943
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passive smoking of the mother during pregnancy; assessing 
the latter solely, an AUC of 0.460 was obtained, reflecting 
random prediction.

Additionally, we applied our model to data of children 
from the Generation R Study obtained from blood collected 
at the ages of six (N = 355) and ten (N = 309) years. In con-
trast to the results for newborns obtained from cord blood, 
we found that the proportion of 6- and 10-year-old children 
accurately inferred as non-smokers with our model was very 
high at 0.994 for both age groups (Table 7). This suggests no 
impact of prenatal smoking exposure nor passive smoking 
exposure during early childhood on the model performance. 
Subsequently, we applied our model to those 197 children 
for which epigenetic data were available from serial samples 
collected at birth, 6, and 10 years of age. The proportion 
of children that with our model accurately inferred as non-
smokers at birth was 0.112, whereas it was 0.994 at six and 
0.995 at 10 years of age, which was highly similar to the 
results obtained from the total datasets available for these 
three time points. The β-values per CpG for the model build-
ing set and the three time points in Generation R are shown 
in Online Resource 3: Figures S1–15.

Discussion

In this study, we introduce a robust, finite set of DNA meth-
ylation markers and carefully validated statistical models 
based on reasonably large population-based data, which 
together allow accurate and reliable inference of a person’s 
tobacco smoking habit and history from blood DNA.

Previous studies have identified numerous CpGs associ-
ated with tobacco smoking in blood, and showed that DNA 
methylation patterns of specific genes are modified by smok-
ing habits [2, 21, 40–50]; here we took advantage of these 
EWASs as a marker discovery resource. From the 20 top 

smoking-associated CpGs consistently highlighted in previ-
ous EWASs and by using new population-based cohort data 
not overlapping with these previous EWASs, we identified 
a robust, finite set of 13 CpG markers as being most suitable 
for inferring a person’s smoking habit from blood DNA. 
Eight of these 13 CpGs are annotated to five known genes 
i.e., AHRR (2 CpGs), GFI1 (2), MYO1G (2), F2RL3 (1) and 
PDZD2 (1), while the remaining 5 CpGs are not annotated 
to any coding regions. The highest AUC (0.880) for a given 
CpG among the 13 biomarkers in the model was achieved 
for cg05575921, which, together with one other CpG in the 
model (cg23576855), is located in the AHRR gene. The 
AHRR gene was shown to interact with the aryl hydrocarbon 
receptor (AHR), the induction point for the xenobiotic path-
way, which includes several P450 enzymes, and is respon-
sible for the degradation of environmental toxins [59–61]. 
Notably, AHRR provides the strongest epigenetic response 
to tobacco smoking known today [59, 62].

While a few previous studies have investigated DNA 
methylation markers for inferring smoking habits from 
blood, they all suffered from one or more limitations, includ-
ing small sample size, limited model validation, exclusion of 
the former smoker category from the prediction model build-
ing, using a large number of CpGs and others [21–26]. For 
example, Philibert et al. [23] reported on the performance 
of five CpGs yielding AUCs 0.86–0.99 but only using 61 
subjects. Notably, all five CpGs were among the 20 markers 
investigated in our study and are also included in our final 
13-CpG model. For cg05575921, Philibert et al. estimated 
an AUC of 0.99 [23]; when testing this DNA methylation 
marker in our model building set of 3764 samples, a con-
siderably lower AUC of 0.8801 was achieved. In another 
study, Elliot et al. [21] reported a methylation score based 
on 183 CpGs to distinguish between current, former and 
never smokers, with a sensitivity of 100% and a specific-
ity of 97% using 96 subjects only. When generating the 

Table 7  Model application to children from the Generation R study at 6 and 10 years of age

AUC  area under the curve
a Proportion of children correctly predicted as non-smokers

Six years old Six years old Ten years old Ten years old
Whole dataset (N = 355) Serial samples (N = 197) Whole dataset (N = 309) Serial samples (N = 197)

Child non-smoking (all “0”)
Accuracya 0.994 0.994 0.994 0.995
Sustained prenatal smoking of mother throughout pregnancy
N 0:309 0:173 0:274 0:173

1:46 1:24 1:35 1:24
Specificity 0.997 0.994 0.993 0.994
Sensitivity 0.022 0.0 0.0 0.0
AUC 0.649 0.650 0.606 0.592
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methylation score using the methods described by Elliot 
et al., and applying it to our model building set (N = 3764), 
we obtained a specificity of 0.864 and sensitivity of 0.747 
with an AUC of 0.806, considerably lower than reported by 
Elliot et al. These two examples illustrate that previously 
reported prediction accuracies obtained from studies using 
small sample size likely reflect overestimation caused by 
small sample size. Given the relatively larger sample size 
for model building and internal validation, and for external 
validation with independent samples as utilized here, our 
results demonstrate that the new 13-CpG model introduced 
here provides more robust and reliable accuracy outcomes 
than previously reported models.

Previous studies have shown that DNA methylation pat-
terns can be altered by age, sex and various lifestyle factors 
other than tobacco smoking [63, 64]. Additionally, recent 
papers suggest that the change in DNA methylation meas-
urements due to smoking are mainly caused by the smoking 
induced changes in cell types [65–68]. We therefore tested 
the impact of age, sex and cell counts on the model perfor-
mance and found that these covariates only provide a slight 
increase in the prediction accuracy our model provides. 
Notably, a model that does not consider sex, age and cell 
counts is beneficial for those applications where (some of) 
this information is not easily available, such as in forensics.

A recent study reported that the DNA methylation of 
most CpGs returns to never smoker levels within 5 years of 
smoking cessation, while some do not go back completely 
[11]. Also, previous work demonstrated that there is an asso-
ciation between smoking cessation time and smoking pack-
years with DNA methylation scores [65, 69]. We therefore 
tested to what degree the 13 selected CpGs can distinguish 
former smokers from current smokers and never-smokers, 
and how well they allow inferring smoking history such as 
smoking cessation time and pack-years. Our results dem-
onstrate that our 3-category model allows as first the infer-
ence of the former smoking category (smoking cessation 
between 0.1 and 58.86 years) together with current smok-
ers and never smokers and also a more in depth inference 
possibility for cessation time categories as of more versus 
less than 5, 10 and 15 years of smoking cessation, although 
not as accurately as current and never smokers, as may be 
expected. The 13 CpGs also allowed accurate prediction of 
the pack-years in current smokers with a high AUCs for dis-
tinguishing between more or less than 10 pack-years, and 
for distinguishing between more or less than 15 pack-years. 
Finally, we show, to the best of our knowledge, for the first 
time an inference model able of inferring life-time smok-
ing information in one model including the never smokers, 
cessation time in former smokers and pack-years in current 
smokers. Thus, the finite set of 13 DNA methylation mark-
ers and models we introduce here not only allow inferring 
information on current smoking or non-smoking status, 

but additionally provide information on former smoking 
and cessation time, smoking intensity in current smokers, 
and can additionally, as the first model to date, also provide 
complete life-time smoking information as of five different 
smoking categories.

Cotinine is the primary metabolite of nicotine and is 
therefore used as a reliable measurement for current smok-
ing [19]. However, due to the short half-live of cotinine 
(between 15 and 19 h), a false-negative prediction of current 
smoking can be easily obtained when there is a long time 
between the last cigarette and blood drawn [19]. In addition, 
former smokers that use nicotine replacement therapy to 
reduce the motivation to smoke and for nicotine withdrawal 
symptoms, might result in false-positive predictions since 
cotinine, nicotine’s metabolite, will still be traceable [20, 
70]. Finally, due to protein instability over time, cotinine 
levels would only be accurately measurable in fresh blood 
samples, which are not always available such as in foren-
sic investigations. Zhang et al. [24] showed that both DNA 
methylation and cotinine can accurately distinguish current 
from never smokers, but also emphasized that only DNA 
methylation is able to provide more in depth life-time smok-
ing information. In line with this, we show in the current 
study that using both cotinine (sensitivity 0.750, specificity 
0.983) and DNA methylation (sensitivity 0.621, specificity 
0.989) we can infer current smokers with high accuracy. 
However, the sensitivity of our CpG model is slightly lower 
than the use of the cotinine cut-off in this subset. Nonethe-
less, with the upcoming availability of DNA methylation 
data in large cohort studies, the availability of a reliable 
smoking inference model, giving extending life-time smok-
ing information inference, would be more widely accessible 
than information on cotinine levels.

Maternal smoking during pregnancy has been shown to 
influence fetal DNA methylation patterns [57, 71], which 
in principle could affect epigenetic inference of smoking 
habits in adults. Additionally, it is shown that maternal 
smoking status can be predicted from DNA methylation 
retrieved from newborns [72, 73]. Therefore, we employed 
data from the Generation R study to test the influence of pre-
natal smoking exposure on the inference of smoking status 
in adolescence. Hence, we tested our prediction model using 
epigenetic data from cord blood collected at time of birth, 
and peripheral blood collected at 6 and 10 years of age [37]. 
Our results showed that at the age of 6 years, 353 of the 355 
children were correctly inferred as non-smokers (accuracy 
of 0.994), and at the age of 10 years 307 of the 309 children 
(accuracy of 0.994) were correctly inferred as non-smokers. 
This might indicate that prenatal smoking exposure and pas-
sive smoking exposure does not affect DNA methylation 
levels to such an extent that they are detected with our infer-
ence model. At time of birth, our model incorrectly inferred 
984 (88.57%) of the 1111 children as smokers (accuracy of 
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0.114). To test whether the newborns were inferred wrongly 
as smokers due to prenatal smoking exposure, we further 
classified the newborns as smokers when their mothers 
smoked throughout pregnancy (N = 161). This resulted in 
a high AUC (0.773), with high sensitivity (0.981) but low 
specificity (0.131). Retrieving this low specificity while cor-
recting for prenatal smoking exposure may indicate that the 
incorrect smoking inference of newborns achieved with our 
model can only in part be explained by smoking exposure 
during pregnancy. Other explanations may be developmen-
tal effects, and perhaps the tissue difference between whole 
blood and cord blood and therefore the difference in cell 
composition, given that the applied model was developed 
using whole blood [74]. Previous studies have shown spe-
cific changes in DNA methylation during early childhood 
that were explained by developmental effects [71, 75]. In any 
case, given that envisioned applications of epigenetic infer-
ence of smoking habit in medical and forensic practice, as 
well as in most epidemiological and public health research, 
are typically performed in adults, our findings in children 
of advanced age imply that our model will indeed deliver 
smoking habit information of the adult individual tested, 
independent of prenatal smoking exposure or other effects.

The main strengths of our study are (1) the use of robust 
DNA methylation markers highlighted in multiple epige-
nome-wide association studies, (2) the use of independent 
population-based studies for marker discovery, model build-
ing and external model validation, and (3) the employment 
of thousands of samples for model building and validation. 
We therefore expect that the high prediction accuracy (AUC 
of 0.911) obtained from the full 13-CpG model in the KORA 
samples used for external validation reflects a realistic char-
acterization of the performance of our model. This is also 
supported in part by the SHIP-Trend outcomes (AUC of 
0.888) of the partial 10-CpG model. As the Illumina 450 K 
array on which our marker selection was initially based is 
no longer available, the SHIP-Trend results using 10-CpG 
subset from the current Infinium MethylationEPIC Bead-
Chip indicate that this sub-model would be applicable to 
new studies moving forward.

This study, however, does not come without limitations. 
Our model is based on smoking habit data retrieved from 
self-reported questionnaires, which are generally considered 
unreliable in terms of underestimating actual smoking lev-
els [15]. Regarding the putative inaccuracy of self-reported 
smoking habits used here as phenotypes, we cannot know 
how error-prone these reports are. In particular, it is possi-
ble that specific groups of volunteers, for instance pregnant 
women such as those involved in the Generation R Study, 
are more reluctant to confide that they smoke [16]. However, 
we did not use the Generation R Study data for model build-
ing or validation purposes. Moreover, we included cotinine 
data to confirm the self-reported smoking habits for subset 

of participants (N = 488). Overall, we expect that smoking 
phenotype inaccuracy did not strongly impact the perfor-
mance outcomes of our models. Lastly, all but one of the 
studies included in the model building and model validation 
are population-based studies, which therefore can include 
participants with various diseases. Though, due to the large 
sample sizes used for model building and validation, we 
expect that disease status does not strongly impact our model 
performance. Another limitation for the pack-year model is 
the formula used to calculate the pack-years. For this esti-
mation, the number of cigarettes the participant currently 
smokes is used, which might have changed over the life 
span, and if so, this phenotypic variation is not considered. 
Additionally, the start-age is used to calculate the number of 
years someone smoked or has been smoking, which might be 
prone to recall bias especially for elderly people.

We envision that future works may provide targeted labo-
ratory tools for analysing the 13 CpGs included in our final 
model in different types of blood samples and possible trans-
lation to different tissues, as is recently already shown to be 
promising for our top hit CpG (cg0557592) in saliva [76]. 
This would enhance the spectrum of practical applications 
of epigenetic smoking habit inference. Given the finite set of 
DNA methylation markers introduced here, it is impractical 
to apply genome-wide DNA methylation microarrays just 
for the purpose of analyzing 13 CpGs. Moreover, there can 
be blood samples where microarrays do not produce reliable 
DNA methylation data, such as when the amount of DNA is 
low and/or the DNA is degraded such as DNA obtained from 
crime scene traces [17]. Hence, the future development of 
a fast and cheap laboratory tool that allows the reliable tar-
geted analysis of the 13 CpGs highlighted here by employing 
a technology that can handle low quality and/or quantity 
DNA would be valuable. Foreseeing the future development 
of such a lab tool, we only included CpGs with at least a 
β-value difference ≥ 10% in mean or median (depending on 
availability per EWAS) in at least one published EWAS, 
to ensure detectability of the DNA methylation differences 
with targeted analysis technologies currently available [77, 
78]. We view the positive results on epigenetic inference of 
smoking habits from blood presented here as a promising 
starting point for inferring more lifestyle factors using DNA 
methylation markers within the concept of epigenetic fin-
gerprinting [17]. This requires continuous progress in iden-
tifying candidate DNA methylation predictors of lifestyle 
factors via dedicated EWASs, the subsequent use of these 
biomarkers in prediction modeling and validation studies to 
generate reliable and accurate models such as that reported 
here for tobacco smoking, and the development of robust and 
sensitive lab tools that allow the successful analysis of the 
DNA samples of interest, including those of limited quality 
and quantity.
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