4 research outputs found

    Structure Guided Optimization, in Vitro Activity, and in Vivo Activity of Pan-PIM Kinase Inhibitors

    No full text
    Proviral insertion of Moloney virus (PIM) 1, 2, and 3 kinases are serine/threonine kinases that normally function in survival and proliferation of hematopoietic cells. As high expression of PIM1, 2, and 3 is frequently observed in many human malignancies, including multiple myeloma, non-Hodgkins lymphoma, and myeloid leukemias, there is interest in determining whether selective PIM inhibition can improve outcomes of these human cancers. Herein, we describe our efforts toward this goal. The structure guided optimization of a singleton high throughput screening hit in which the potency against all three PIM isoforms was increased >10,000-fold to yield compounds with pan PIM <i>K</i><sub>i</sub>s < 10 pM, nanomolar cellular potency, and in vivo activity in an acute myeloid leukemia Pim-dependent tumor model is described

    6-Amino-3-methylpyrimidinones as Potent, Selective, and Orally Efficacious SHP2 Inhibitors

    No full text
    Protein tyrosine phosphatase SHP2 is an oncoprotein associated with cancer as well as a potential immune modulator because of its role in the programmed cell death PD-L1/PD-1 pathway. In the preceding manuscript, we described the optimization of a fused, bicyclic screening hit for potency, selectivity, and physicochemical properties in order to further expand the chemical diversity of allosteric SHP2 inhibitors. In this manuscript, we describe the further expansion of our approach, morphing the fused, bicyclic system into a novel monocyclic pyrimidinone scaffold through our understanding of SAR and use of structure-based design. These studies led to the identification of SHP394 (1), an orally efficacious inhibitor of SHP2, with high lipophilic efficiency, improved potency, and enhanced pharmacokinetic properties. We also report other pyrimidinone analogues with favorable pharmacokinetic and potency profiles. Overall, this work improves upon our previously described allosteric inhibitors and exemplifies and extends the range of permissible chemical templates that inhibit SHP2 via the allosteric mechanism

    Identification of <i>N</i>‑(4-((1<i>R</i>,3<i>S</i>,5<i>S</i>)‑3-Amino-5-methylcyclohexyl)pyridin-3-yl)-6-(2,6-difluorophenyl)-5-fluoropicolinamide (PIM447), a Potent and Selective Proviral Insertion Site of Moloney Murine Leukemia (PIM) 1, 2, and 3 Kinase Inhibitor in Clinical Trials for Hematological Malignancies

    No full text
    Pan proviral insertion site of Moloney murine leukemia (PIM) 1, 2, and 3 kinase inhibitors have recently begun to be tested in humans to assess whether pan PIM kinase inhibition may provide benefit to cancer patients. Herein, the synthesis, in vitro activity, in vivo activity in an acute myeloid leukemia xenograft model, and preclinical profile of the potent and selective pan PIM kinase inhibitor compound <b>8</b> (PIM447) are described. Starting from the reported aminopiperidyl pan PIM kinase inhibitor compound <b>3</b>, a strategy to improve the microsomal stability was pursued resulting in the identification of potent aminocyclohexyl pan PIM inhibitors with high metabolic stability. From this aminocyclohexyl series, compound <b>8</b> entered the clinic in 2012 in multiple myeloma patients and is currently in several phase 1 trials of cancer patients with hematological malignancies

    Design and Discovery of <i>N</i>‑(2-Methyl-5′-morpholino-6′-((tetrahydro‑2<i>H</i>‑pyran-4-yl)oxy)-[3,3′-bipyridin]-5-yl)-3-(trifluoromethyl)benzamide (RAF709): A Potent, Selective, and Efficacious RAF Inhibitor Targeting RAS Mutant Cancers

    No full text
    RAS oncogenes have been implicated in >30% of human cancers, all representing high unmet medical need. The exquisite dependency on CRAF kinase in KRAS mutant tumors has been established in genetically engineered mouse models and human tumor cells. To date, many small molecule approaches are under investigation to target CRAF, yet kinase-selective and cellular potent inhibitors remain challenging to identify. Herein, we describe <b>14</b> (RAF709) [Aversa, Biaryl amide compounds as kinase inhibitors and their preparation. WO 2014151616, 2014], a selective B/C RAF inhibitor, which was developed through a hypothesis-driven approach focusing on drug-like properties. A key challenge encountered in the medicinal chemistry campaign was maintaining a balance between good solubility and potent cellular activity (suppression of pMEK and proliferation) in KRAS mutant tumor cell lines. We investigated the small molecule crystal structure of lead molecule <b>7</b> and hypothesized that disruption of the crystal packing would improve solubility, which led to a change from <i>N</i>-methylpyridone to a tetrahydropyranyl oxy-pyridine derivative. <b>14</b> proved to be soluble, kinase selective, and efficacious in a KRAS mutant xenograft model
    corecore