2 research outputs found

    Physical-Mechanical Properties of γ-Irradiated SiC Ceramics for Radioactive Wastes Immobilization

    Get PDF
    The interest in silicon carbide (SiC-based) ceramics and composites as matrix material for nuclear waste immobilization is grown up. Long-term chemical durability and radiation resistance of SiC are important factors for radionuclides immobilization. Advantages of SiC-based ceramics as structural materials in nuclear applications are the high-temperature properties, high density and reduced neutron activation. The use of radiation resistant materials is a strong requirement for safe and environmentally beneficial energy system. The SiC ceramics stability under irradiation for temperatures up to 1273 K is also very important for nuclear power applications. The SiC matrices doped by additives of Cr, Si were fabricated using High Speed Hot Pressing Method. Additives content was in the range from 0.5 to 3 wt %. Microstructural characteristics of silicon carbide ceramics were analyzed by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and infra-red spectroscopy (IR) methods. The results of microcracking under indentation conditions were revealed the lack of cracks in the SiC ceramics with Cr additives before and after irradiation process. In addition, it was demonstrated that samples of SiC with alloying additives Cr and Si possess high mechanical parameters under γ-irradiation process. The strength of ceramics increases with the uniform and fine-grained structure formation. The modification of phase composition and mechanical properties of the SiC ceramics with Cr and Si additives under γ-irradiation were analyzed for further development of radiation resistant and matrix materials for radioactive wastes immobilization

    Cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM alloys

    Get PDF
    The microstructure, hardness and cavitation wear of Eurofer 97, Cr18Ni10Ti and 42HNM have been investigated. It was revealed that the cavitation resistance of the 42HNM alloy is by an order of magnitude higher than that of the Cr18Ni10Ti steel and 16 times higher than that of the Eurofer 97 steel. Alloy 42HNM has the highest microhardness (249 kg/mm2) of all the investigated materials, which explains its high cavitation resistance. The microhardness values of the Cr18Ni10Ti steel and the Eurofer 97 were 196.2 kg/mm2 and 207.2 kg/mm2, respectively. The rate of cavitation wear of the austenitic steel Cr18Ni10Ti is 2.6 times lower than that of the martensitic Eurofer 97
    corecore