2,715 research outputs found

    Optimized Entanglement Purification

    Get PDF
    We investigate novel protocols for entanglement purification of qubit Bell pairs. Employing genetic algorithms for the design of the purification circuit, we obtain shorter circuits achieving higher success rates and better final fidelities than what is currently available in the literature. We provide a software tool for analytical and numerical study of the generated purification circuits, under customizable error models. These new purification protocols pave the way to practical implementations of modular quantum computers and quantum repeaters. Our approach is particularly attentive to the effects of finite resources and imperfect local operations - phenomena neglected in the usual asymptotic approach to the problem. The choice of the building blocks permitted in the construction of the circuits is based on a thorough enumeration of the local Clifford operations that act as permutations on the basis of Bell states

    General phase spaces: from discrete variables to rotor and continuum limits

    Full text link
    We provide a basic introduction to discrete-variable, rotor, and continuous-variable quantum phase spaces, explaining how the latter two can be understood as limiting cases of the first. We extend the limit-taking procedures used to travel between phase spaces to a general class of Hamiltonians (including many local stabilizer codes) and provide six examples: the Harper equation, the Baxter parafermionic spin chain, the Rabi model, the Kitaev toric code, the Haah cubic code (which we generalize to qudits), and the Kitaev honeycomb model. We obtain continuous-variable generalizations of all models, some of which are novel. The Baxter model is mapped to a chain of coupled oscillators and the Rabi model to the optomechanical radiation pressure Hamiltonian. The procedures also yield rotor versions of all models, five of which are novel many-body extensions of the almost Mathieu equation. The toric and cubic codes are mapped to lattice models of rotors, with the toric code case related to U(1) lattice gauge theory.Comment: 22 pages, 3 figures; part of special issue on Rabi model; v2 minor change

    Asymptotics of quantum channels: conserved quantities, an adiabatic limit, and matrix product states

    Get PDF
    This work derives an analytical formula for the asymptotic state---the quantum state resulting from an infinite number of applications of a general quantum channel on some initial state. For channels admitting multiple fixed or rotating points, conserved quantities---the left fixed/rotating points of the channel---determine the dependence of the asymptotic state on the initial state. The formula stems from a Noether-like theorem stating that, for any channel admitting a full-rank fixed point, conserved quantities commute with that channel’s Kraus operators up to a phase. The formula is applied to adiabatic transport of the fixed-point space of channels, revealing cases where the dissipative/spectral gap can close during any segment of the adiabatic path. The formula is also applied to calculate expectation values of noninjective matrix product states (MPS) in the thermodynamic limit, revealing that those expectation values can also be calculated using an MPS with reduced bond dimension and a modified boundary

    Quantum Rabi model for N-state atoms

    Full text link
    A tractable N-state Rabi Hamiltonian is introduced by extending the parity symmetry of the two-state model. The single-mode case provides a few-parameter description of a novel class of periodic systems, predicting that the ground state of certain four-state atom-cavity systems will undergo parity change at strong coupling. A group-theoretical treatment provides physical insight into dynamics and a modified rotating wave approximation obtains accurate analytical energies. The dissipative case can be applied to study excitation energy transfer in molecular rings or chains.Comment: 5 pages, 3 figures + supplement (2 pages); to appear in Phys. Rev. Let

    Dissipative self-interference and robustness of continuous error-correction to miscalibration

    Get PDF
    We derive an effective equation of motion within the steady-state subspace of a large family of Markovian open systems (i.e., Lindbladians) due to perturbations of their Hamiltonians and system-bath couplings. Under mild and realistic conditions, competing dissipative processes destructively interfere without the need for fine-tuning and produce no dissipation within the steady-state subspace. In quantum error-correction, these effects imply that continuously error-correcting Lindbladians are robust to calibration errors, including miscalibrations consisting of operators undetectable by the code. A similar interference is present in more general systems if one implements a particular Hamiltonian drive, resulting in a coherent cancellation of dissipation. On the opposite extreme, we provide a simple implementation of universal Lindbladian simulation
    corecore