114 research outputs found

    Apoptosis in differentiating C2C12 muscle cells selectively targets Bcl-2-deficient myotubes

    Get PDF
    Muscle cell apoptosis accompanies normal muscle development and regeneration, as well as degenerative diseases and aging. C2C12 murine myoblast cells represent a common model to study muscle differentiation. Though it was already shown that myogenic differentiation of C2C12 cells is accompanied by enhanced apoptosis in a fraction of cells, either the cell population sensitive to apoptosis or regulatory mechanisms for the apoptotic response are unclear so far. In the current study we characterize apoptotic phenotypes of different types of C2C12 cells at all stages of differentiation, and report here that myotubes of differentiated C2C12 cells with low levels of anti-apoptotic Bcl-2 expression are particularly vulnerable to apoptosis even though they are displaying low levels of pro-apoptotic proteins Bax, Bak and Bad. In contrast, reserve cells exhibit higher levels of Bcl-2 and high resistance to apoptosis. The transfection of proliferating myoblasts with Bcl-2 prior to differentiation did not protect against spontaneous apoptosis accompanying differentiation of C2C12 cell but led to Bcl-2 overexpression in myotubes and to significant protection from apoptotic cell loss caused by exposure to hydrogen peroxide. Overall, our data advocate for a Bcl-2-dependent mechanism of apoptosis in differentiated muscle cells. However, downstream processes for spontaneous and hydrogen peroxide induced apoptosis are not completely similar. Apoptosis in differentiating myoblasts and myotubes is regulated not through interaction of Bcl-2 with pro-apoptotic Bcl-2 family proteins such as Bax, Bak, and Bad

    Diastereoselective reduction of protein-bound methionine sulfoxide by methionine sulfoxide reductase

    Get PDF
    AbstractMethionine sulfoxide (MetSO) in calmodulin (CaM) was previously shown to be a substrate for bovine liver peptide methionine sulfoxide reductase (pMSR, EC 1.8.4.6), which can partially recover protein structure and function of oxidized CaM in vitro. Here, we report for the first time that pMSR selectively reduces the D-sulfoxide diastereomer of CaM-bound L-MetSO (L-Met-D-SO). After exhaustive reduction by pMSR, the ratio of L-Met-D-SO to L-Met-L-SO decreased to about 1:25 for hydrogen peroxide-oxidized CaM, and to about 1:10 for free MetSO. The accumulation of MetSO upon oxidative stress and aging in vivo may be related to incomplete, diastereoselective, repair by pMSR

    Fluorogenic tagging of protein 3-nitrotyrosine with 4-(aminomethyl)benzenesulfonate (ABS) in tissues: a useful alternative to immunohistochemistry for fluorescence microscopy imaging of protein nitration

    Get PDF
    Protein tyrosine nitration is a common biomarker of biological aging and diverse pathologies associated with the excessive formation of reactive oxygen and nitrogen species. Recently, we suggested a novel fluorogenic derivatization procedure for the detection of 3-nitrotyrosine (3-NT) using benzylamine derivatives to convert specifically protein or peptide bound 3-NT to a highly fluorescent benzoxazole product. In the current study, we applied this procedure to fluorogenic derivatization of protein 3-NT in sections from adult rat cerebellum in order to: (i) test this method in imaging nitrated proteins in fixed brain tissue sections, and (ii) compare the chemical approach to immunohistochemical labeling with anti-3-NT antibodies. Immunofluorescence analysis of cerebellar sections using anti-3-NT antibodies showed differential levels of immunostaining in the molecular, Purkinje, and granule cell layers of the cerebellar cortex; in agreement with previous reports, the Purkinje cells were most highly labeled. Importantly, fluorogenic derivatization reactions of cerebellar proteins with 4-(aminomethyl)benzenesulfonic acid (ABS) and K3Fe(CN)6 at pH 9, following sodium dithionite (SDT) reduction of 3-NT to 3-aminotyrosine (3-AT), showed a very similar pattern of relative intensity of cell labeling and improved resolution when compared with antibody labeling. Our data demonstrate that ABS-derivatization may be either a useful alternative or a complimentary approach to immunolabeling in imaging protein nitration in cells and tissues, including under conditions of dual labeling with antibodies to cell proteins, thus allowing for cellular co-localization of nitrated proteins and any protein of interest

    Identification of oxidation sites and covalent cross-links in metal catalyzed oxidized interferon beta-1a: potential implications for protein aggregation and immunogenicity

    Get PDF
    Oxidation via Cu2+/ascorbate of recombinant human interferon beta-1a (IFNβ1a) leads to highly immunogenic aggregates, however it is unknown which amino acids are modified and how covalent aggregates are formed. In the present work we mapped oxidized and cross-linked amino acid residues in aggregated IFNβ1a, formed via Cu2+/ascorbate catalyzed oxidation. Size exclusion chromatography (SEC) was used to confirm extensive aggregation of oxidized IFNβ1a. Circular dichroism and intrinsic fluorescence spectroscopy indicated substantial loss of secondary and tertiary structure, respectively. Derivatization with 4-(aminomethyl) benzenesulfonic acid was used to demonstrate, by fluorescence in combination with SEC, the presence of tyrosine (Tyr) oxidation products. High performance liquid chromatography coupled to electrospray ionization mass spectrometry of reduced, alkylated and digested protein was employed to localize chemical degradation products. Oxidation products of methionine, histidine, phenylalanine (Phe), tryptophan and Tyr residues were identified throughout the primary sequence. Covalent crosslinks via 1,4- or 1,6-type addition between primary amines and DOCH (2-amino-3-(3,4-dioxocyclohexa-1,5-dien-1-yl) propanoic acid, an oxidation product of Phe and Tyr) were detected. There was no evidence of disulfide bridge, Schiff base, or dityrosine formation. The chemical cross-links identified in this work are most likely responsible for the formation of covalent aggregates of IFNβ1a induced by oxidation, which have previously been shown to be highly immunogenic

    Inactivation of rabbit muscle glycogen phosphorylase b by peroxynitrite revisited: does the nitration of Tyr613 in the allosteric inhibition site control enzymatic function?

    Get PDF
    There is increasing evidence that sequence-specific formation of 3-nitrotyrosine (3-NT) may cause functional changes in target proteins. Recently, the nitration of Tyr residues in glycogen phosphorylase b (Ph-b) was implicated in the age-associated decline of protein function (Sharov et al., Exp. Gerontol. 41, 407–416; 2006); in another report, the nitration of one specific residue, Tyr613, located in the allosteric inhibition site was hypothesized as a rationale for peroxynitrite inactivation (Dairou et al., J. Mol. Biol. 372, 1009–1021; 2007). In the present study, we have optimized the analysis of in-gel Ph-b digests by high performance liquid chromatography-electro spray ionization-tandem mass spectrometry, in order to achieve a quantitative analysis of nitration of individual Tyr residues at a high coverage of Tyr-containing sequences (92%). Our data do not confirm the role of Tyr613 nitration in the control of enzymatic function. Furthermore, we show here that the enzymatic activity of Ph-b does not directly correlate with the protein nitration levels, and that the modification of Cys and, potentially, other amino acid residues can better rationalize Ph-b inactivation by peroxynitrite

    Singlet oxygen inactivates protein tyrosine phosphatase-1B by oxidation of the active site cysteine

    Get PDF
    Singlet oxygen (1O2), an electronically excited form of molecular oxygen, is a mediator of biological effects of ultraviolet A radiation, stimulating signaling cascades in human cells. We demonstrate here that 1O2 generated by photosensitization or by thermodecomposition of 3,3′-(1,4-naphthylidene)dipropionate-1,4-endoperoxide inactivates isolated protein tyrosine phosphatases (PTPases). PTPase activities of PTP1B or CD45 were abolished by low concentrations of 1O2, but were largely restored by post-treatment with dithiothreitol. Electrospray ionization mass spectrometry analysis of tryptic digests of PTP1B exposed to 1O2 revealed oxidation of active-site Cys215 as the only cysteine residue oxidized. In summary, 1O2 may activate signaling cascades by interfering with phosphotyrosine dephosphorylation.This study was supported by Deutsche Forschungsgemeinschaft (Bonn, Germany; Sonderforschungsbereich 503, Project B1). H.S. is a Fellow of the National Foundation for Cancer Research, Bethesda, MD, USA

    A Methodology for Simultaneous Fluorogenic Derivatization and Boronate Affinity Enrichment of 3-Nitrotyrosine Containing Peptides

    Get PDF
    We synthesized and characterized a new tagging reagent, (3R,4S)-1-(4-(aminomethyl)phenylsulfonyl)pyrrolidine-3,4-diol (APPD), for the selective fluorogenic derivatization of 3-nitrotyrosine (3-NT) residues in peptides (after reduction to 3-aminotyrosine) and affinity enrichment. The synthetic 3-NT-containing peptide, FSAY(3-NO2)LER, was employed as a model for method validation. Further, this derivatization protocol was successfully tested for analysis of 3-NT-containing proteins exposed to peroxynitrite in the total protein lysate of cultured C2C12 cells. The quantitation of 3-NT content in samples was achieved through either fluorescence spectrometry or boronate affinity chromatography with detection by specific fluorescence (excitation and emission wavelengths of 360 and 510 nm, respectively); the respective limits of detection were 95 and 68 nM (19 and 13 pmol total amount) of 3-NT. Importantly, the derivatized peptides show a strong retention on a synthetic boronate affinity column, containing sulfonamide-phenylboronic acid, under mild chromatographic conditions, affording a route to separate the derivatized peptides from large amounts (milligrams) of non-derivatized peptides, and to enrich them for fluorescent detection and MS identification. Tandem MS analysis identified chemical structures of peptide 3-NT fluorescent derivatives and revealed that the fluorescent derivatives undergo efficient backbone fragmentations, permitting sequence-specific identification of protein nitration at low concentrations of 3-NT in complex protein mixtures

    Myeloperoxidase-derived oxidants inhibit sarco/endoplasmic reticulum Ca2+-ATPase activity, and perturb Ca2+ homeostasis in human coronary artery endothelial cells

    Get PDF
    The sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) plays a critical role in Ca2+ homeostasis via sequestration of this ion into the sarco/endoplasmic reticulum. The activity of this pump is inhibited by oxidants and impaired in ageing tissues and cardiovascular disease. We have shown previously that the myeloperoxidase- (MPO) derived oxidants HOCl and HOSCN target thiols and mediate cellular dysfunction. As SERCA contains Cys residues critical to ATPase activity, we hypothesized that HOCl and HOSCN might inhibit SERCA activity, via thiol oxidation, and increase cytosolic Ca2+ levels in human coronary artery endothelial cells (HCAEC). Exposure of sarcoplasmic reticulum vesicles to pre-formed or enzymatically-generated HOCl and HOSCN resulted in a concentration-dependent decrease in ATPase activity; this was also inhibited by the SERCA inhibitor thapsigargin. Decomposed HOSCN and incomplete MPO enzyme systems did not decrease activity. Loss of ATPase activity occurred concurrently with oxidation of SERCA Cys residues and protein modification. Exposure of HCAEC, with or without external Ca2+, to HOSCN or HOCl, resulted in a time- and concentration-dependent increase in intracellular Ca2+ under conditions that did not result in immediate loss of cell viability. Thapsigargin, but not inhibitors of plasma membrane or mitochondrial Ca2+ pumps/channels, completely attenuated the increase in intracellular Ca2+ consistent with a critical role for SERCA in maintaining endothelial cell Ca2+ homeostasis. Angiotensin II pre-treatment potentiated the effect of HOSCN at low concentrations. MPO-mediated modulation of intracellular Ca2+ levels may exacerbate endothelial dysfunction, a key early event in atherosclerosis, and be more marked in smokers due to their higher SCN− levels

    Fluorogenic Tagging of Peptide and Protein 3-Nitrotyrosine with 4-(Aminomethyl)-benzenesulfonic Acid for Quantitative Analysis of Protein Tyrosine Nitration

    Get PDF
    Protein 3-nitrotyrosine (3-NT) has been recognized as an important biomarker of nitroxidative stress associated with inflammatory and degenerative diseases, and biological aging. Analysis of protein-bound 3-NT continues to represent a challenge since in vivo it frequently does not accumulate on proteins in amounts detectable by quantitative analytical methods. Here, we describe a novel approach of fluorescent tagging and quantitation of peptide-bound 3-NT residues based on the selective reduction to 3-AT followed by reaction with 4-(amino-methyl)benzenesulfonic acid (ABS) in the presence of K3Fe(CN)6 to form a highly fluorescent 2-phenylbenzoxazole product. Synthetic 3-NT peptide (0.005–1 μM) upon reduction with 10 mM sodium dithionite and tagging with 2 mM ABS and 5 μM K3Fe(CN)6 in 0.1 M Na2HPO4 buffer (pH 9.0) was converted with yields >95% to a single fluorescent product incorporating two ABS molecules per 3-NT residue, with fluorescence excitation and emission maxima at 360 ± 2 and 490 ± 2 nm, respectively, and a quantum yield of 0.77 ± 0.08, based on reverse-phase LC with UV and fluorescence detection, fluorescence spectroscopy and LC–MS–MS analysis. This protocol was successfully tested for quantitative analysis of in vitro Tyr nitration in a model protein, rabbit muscle phosphorylase b, and in a complex mixture of proteins from C2C12 cultured cells exposed to peroxynitrite, with a detection limit of ca. 1 pmol 3-NT by fluorescence spectrometry, and an apparent LOD of 12 and 40 pmol for nitropeptides alone or in the presence of 100 μg digested cell proteins, respectively. LC–MS–MS analysis of ABS tagged peptides revealed that the fluorescent derivatives undergo efficient backbone fragmentations, allowing for sequence-specific characterization of protein Tyr nitration in proteomic studies. Fluorogenic tagging with ABS also can be instrumental for detection and visualization of protein 3-NT in LC and gel-based protein separations

    SOMSpec as a general purpose validated self-organising map tool for rapid protein secondary structure prediction from infrared absorbance data

    Get PDF
    A protein’s structure is the key to its function. As protein structure can vary with environment, it is important to be able to determine it over a wide range of concentrations, temperatures, formulation vehicles, and states. Robust reproducible validated methods are required for applications including batch-batch comparisons of biopharmaceutical products. Circular dichroism is widely used for this purpose, but an alternative is required for concentrations above 10 mg/mL or for solutions with chiral buffer components that absorb far UV light. Infrared (IR) protein absorbance spectra of the Amide I region (1,600–1700 cm−1) contain information about secondary structure and require higher concentrations than circular dichroism often with complementary spectral windows. In this paper, we consider a number of approaches to extract structural information from a protein infrared spectrum and determine their reliability for regulatory and research purpose. In particular, we compare direct and second derivative band-fitting with a self-organising map (SOM) approach applied to a number of different reference sets. The self-organising map (SOM) approach proved significantly more accurate than the band-fitting approaches for solution spectra. As there is no validated benchmark method available for infrared structure fitting, SOMSpec was implemented in a leave-one-out validation (LOOV) approach for solid-state transmission and thin-film attenuated total reflectance (ATR) reference sets. We then tested SOMSpec and the thin-film ATR reference set against 68 solution spectra and found the average prediction error for helix (α + 310) and β-sheet was less than 6% for proteins with less than 40% helix. This is quantitatively better than other available approaches. The visual output format of SOMSpec aids identification of poor predictions. We also demonstrated how to convert aqueous ATR spectra to and from transmission spectra for structure fitting. Fourier self-deconvolution did not improve the average structure predictions
    • …
    corecore