62 research outputs found

    Establishing criteria for human mesenchymal stem cell potency

    Get PDF
    This study sought to identify critical determinants of mesenchymal stem cell (MSC) potency using in vitro and in vivo attributes of cells isolated from the bone marrow of age‐ and sex‐matched donors. Adherence to plastic was not indicative of potency, yet capacity for long‐term expansion in vitro varied considerably between donors, allowing the grouping of MSCs from the donors into either those with high‐growth capacity or low‐growth capacity. Using this grouping strategy, high‐growth capacity MSCs were smaller in size, had greater colony‐forming efficiency, and had longer telomeres. Cell‐surface biomarker analysis revealed that the International Society for Cellular Therapy (ISCT) criteria did not distinguish between high‐growth capacity and low‐growth capacity MSCs, whereas STRO‐1 and platelet‐derived growth factor receptor alpha were preferentially expressed on high‐growth capacity MSCs. These cells also had the highest mean expression of the mRNA transcripts TWIST‐1 and DERMO‐1. Irrespective of these differences, both groups of donor MSCs produced similar levels of key growth factors and cytokines involved in tissue regeneration and were capable of multilineage differentiation. However, high‐growth capacity MSCs produced approximately double the volume of mineralized tissue compared to low‐growth capacity MSCs when assessed for ectopic bone‐forming ability. The additional phenotypic criteria presented in this study when combined with the existing ISCT minimum criteria and working proposal will permit an improved assessment of MSC potency and provide a basis for establishing the quality of MSCs prior to their therapeutic application

    Raman mapping glucose metabolites during human mesenchymal stem cell adipogenesis

    Get PDF
    Raman mapping was used to determine the lipid distribution inside human mesenchymal stem cells during induced adipogenesis by monitoring C-H stretching bands of the fats inside the lipid droplets. By incorporating deuterated glucose into the cell culture medium during induction it was possible to distinguish whether or not downstream metabolites, either in lipid droplets or in the cytoplasm, had been formed before or after the adipogenic cascade, because C-D stretching bands are 1/√2 shifted compared to the C-H bands. Thus, metabolites formed after the initiation of the process displayed both C-H and C-D stretching bands and so were forming during induced adipogenesis rather than prior to it. With the ability to distinguish small putative lipid drops formed by the induction of adipogenesis from those pre-formed in the cell, it was possible to analyze spectral changes occurring in the droplets at the earliest stages of adipogenesis. There were two key findings. Firstly, Raman spectra of lipid droplets evolved over time, suggesting that their composition at the early stages was not the same as at the later stages. Secondly, it was apparent that the proportion of unsaturated fats in droplets was higher at early stages than it was at later stages, suggesting that unsaturated fats arrive in the droplets faster than saturated ones

    Enhancing the efficacy of stem cell therapy with glycosaminoglycans

    Get PDF
    Human mesenchymal stem cell (hMSC) therapy offers significant potential for osteochondral regeneration. Such applications require their ex vivo expansion in media frequently supplemented with fibroblast growth factor 2 (FGF2). Particular heparan sulfate (HS) fractions stabilize FGF2-FGF receptor complexes. We show that an FGF2-binding HS variant (HS8) accelerates the expansion of freshly isolated bone marrow hMSCs without compromising their naivety. Importantly, the repair of osteochondral defects in both rats and pigs is improved after treatment with HS8-supplemented hMSCs (MSCHS8), when assessed histologically, biomechanically, or by MRI. Thus, supplementing hMSC culture media with an HS variant that targets endogenously produced FGF2 allows the elimination of exogenous growth factors that may adversely affect their therapeutic potency

    Wnt signaling controls the fate of mesenchymal stem cells

    No full text
    Multipotential mesenchymal stem cells (MSCs) are able to differentiate along several known lineages and have been shown to be efficacious for in vivo wound repair. The growth and differentiation of MSCs are known to be tightly regulated via interactions with specific extracellular mediators. Recent studies have shown that Wnts and their downstream signaling pathways play an important role in the self-renewal and differentiation of MSCs. Indeed altered bone-mass is known to result from mutations in LRP5, a Wnt co-receptor, that suggests Wnt plays an important signaling role during bone formation, possibly involving MSCs. This review outlines the current understanding of the distinct Wnt intracellular pathways including both canonical β-catenin/TCF(LEF1) signaling and non-canonical cascades mediated by JNK, PKC, Ca2+ or Rho, and how they are involved in the regulation of MSC proliferation and differentiation. We also discuss the coordination between different Wnt signaling cascades to precisely control MSC cell fate decisions, and we dissect the functional cross-talk of Wnt signaling that is known to occur with other growth factor signaling pathways

    Heparan Sulfate-based Treatments for Regenerative Medicine

    No full text

    Exogenous Slit2 does not affect ureteric branching or nephron formation during kidney development

    No full text
    In an attempt to elucidate the role of Slit2 invertebrate kidney development, the effect of adding exogenous human Slit2 protein (hSlit2) to developing murine metanephric kidney explants was examined. To confirm the activity of the recombinant Slit2 protein, neurons from 8 day old chick sympathetic nerve chain dorsal root ganglia were cultured with hSlit2 protein, which induced significant neurite branching and outgrowth. Using kidney explants as a model system, metanephric development in the presence of hSlit2 protein was examined. Addition of hSlit2 up to a final concentration of 1 mug/ml had no detectable effect on the formation of nephrons or on branching morphogenesis of the ureteric tree after 2 or 4 days in culture, as assessed via immunofluorescence for the markers WT1 and calbindin 28K respectively. Similarly, maturation of the nephrogenic mesenchyme occurred in a phenotypically normal fashion. In situ analysis of the Slit receptors, Robot and Robot, the vasculogenic markers VEGFA and Flk-1, and the stromal cell marker BF2 displayed no difference in comparison to controls
    corecore