787 research outputs found

    Swelling of acetylated wood in organic liquids

    Full text link
    To investigate the affinity of acetylated wood for organic liquids, Yezo spruce wood specimens were acetylated with acetic anhydride, and their swelling in various liquids were compared to those of untreated specimens. The acetylated wood was rapidly and remarkably swollen in aprotic organic liquids such as benzene and toluene in which the untreated wood was swollen only slightly and/or very slowly. On the other hand, the swelling of wood in water, ethylene glycol and alcohols remained unchanged or decreased by the acetylation. Consequently the maximum volume of wood swollen in organic liquids was always larger than that in water. The effect of acetylation on the maximum swollen volume of wood was greater in liquids having smaller solubility parameters. The easier penetration of aprotic organic liquids into the acetylated wood was considered to be due to the scission of hydrogen bonds among the amorphous wood constituents by the substitution of hydroxyl groups with hydrophobic acetyl groups.Comment: to be published in J Wood Science (Japanese wood research society

    Observation of Magnetic Supercooling of the Transition to the Vortex State

    Full text link
    We demonstrate that the transition from the high-field state to the vortex state in a nanomagnetic disk shows the magnetic equivalent of supercooling. This is evidence that this magnetic transition can be described in terms of a modified Landau first-order phase transition. To accomplish this we have measured the bulk magnetization of single magnetic disks using nanomechanical torsional resonator torque magnetometry. This allows observation of single vortex creation events without averaging over an array of disks or over multiple runs.Comment: 11 pages preprint, 4 figures, accepted to New Journal of Physic

    UGA’s Green Infrastructure Plan: Student Envisioned Plans to Improve Ecosystem Services on Campus

    Get PDF
    Proceedings of the 2011 Georgia Water Resources Conference, April 11, 12, and 13, 2011, Athens, Georgia.Graduate students from the “Nature and Sustainability” studio course at UGA’s College of Environment and Design created Green Infrastructure Plans for UGA’s Campus. Objectives of this service learning project included gathering inventory information, analyzing existing conditions, garnering stakeholder input and crafting plans at two scales. Students individually prepared campus wide plans, and then created site plans for a specific area. These proposed interventions were based on creating or enhancing a network of linkages and hubs (corridors and patches), otherwise known as Green Infrastructure, which supports ecosystem services such as water and nutrient cycling. Unfortunately, legacy land use and substantial impermeable area on campus hinders ecosystem function. In order to reverse these trends to approach a more sustainable trajectory, students sought to preserve, enhance and/or restore critical ecosystem services. This planning process may inform future planning efforts undertaken by the Office of University Architects to improve the green infrastructure of campus and further sustainability goals.Sponsored by: Georgia Environmental Protection Division U.S. Geological Survey, Georgia Water Science Center U.S. Department of Agriculture, Natural Resources Conservation Service Georgia Institute of Technology, Georgia Water Resources Institute The University of Georgia, Water Resources FacultyThis book was published by Warnell School of Forestry and Natural Resources, The University of Georgia, Athens, Georgia 30602-2152. The views and statements advanced in this publication are solely those of the authors and do not represent official views or policies of The University of Georgia, the U.S. Geological Survey, the Georgia Water Research Institute as authorized by the Water Research Institutes Authorization Act of 1990 (P.L. 101-307) or the other conference sponsors

    Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid displacement across multiple time zones results in a conflict between the new cycle of light and dark and the previously entrained program of the internal circadian clock, a phenomenon known as jet lag. In humans, jet lag is often characterized by malaise, appetite loss, fatigue, disturbed sleep and performance deficit, the consequences of which are of particular concern to athletes hoping to perform optimally at an international destination. As a species renowned for its capacity for athletic performance, the consequences of jet lag are also relevant for the horse. However, the duration and severity of jet lag related circadian disruption is presently unknown in this species. We investigated the rates of re-entrainment of serum melatonin and core body temperature (BT) rhythms following an abrupt 6-h phase advance of the LD cycle in the horse.</p> <p>Methods</p> <p>Six healthy, 2 yr old mares entrained to a 12 h light/12 h dark (LD 12:12) natural photoperiod were housed in a light-proofed barn under a lighting schedule that mimicked the external LD cycle. Following baseline sampling on Day 0, an advance shift of the LD cycle was accomplished by ending the subsequent dark period 6 h early. Blood sampling for serum melatonin analysis and BT readings were taken at 3-h intervals for 24 h on alternate days for 11 days. Disturbances to the subsequent melatonin and BT 24-h rhythms were assessed using repeated measures ANOVA and analysis of Cosine curve fitting parameters.</p> <p>Results</p> <p>We demonstrate that the equine melatonin rhythm re-entrains rapidly to a 6-h phase advance of an LD12:12 photocycle. The phase shift in melatonin was fully complete on the first day of the new schedule and rhythm phase and waveform were stable thereafter. In comparison, the advance in the BT rhythm was achieved by the third day, however BT rhythm waveform, especially its mesor, was altered for many days following the LD shift.</p> <p>Conclusion</p> <p>Aside from the temperature rhythm disruption, rapid resynchronization of the melatonin rhythm suggests that the central circadian pacemaker of the horse may possess a particularly robust entrainment response. The consequences for athletic performance remain unknown.</p

    Biogeochemical and historical drivers of microbial community composition and structure in sediments from Mercer Subglacial Lake, West Antarctica

    Get PDF
    Ice streams that flow into Ross Ice Shelf are underlain by water-saturated sediments, a dynamic hydrological system, and subglacial lakes that intermittently discharge water downstream across grounding zones of West Antarctic Ice Sheet (WAIS). A 2.06 m composite sediment profile was recently recovered from Mercer Subglacial Lake, a 15 m deep water cavity beneath a 1087 m thick portion of the Mercer Ice Stream. We examined microbial abundances, used 16S rRNA gene amplicon sequencing to assess community structures, and characterized extracellular polymeric substances (EPS) associated with distinct lithologic units in the sediments. Bacterial and archaeal communities in the surficial sediments are more abundant and diverse, with significantly different compositions from those found deeper in the sediment column. The most abundant taxa are related to chemolithoautotrophs capable of oxidizing reduced nitrogen, sulfur, and iron compounds with oxygen, nitrate, or iron. Concentrations of dissolved methane and total organic carbon together with water content in the sediments are the strongest predictors of taxon and community composition. δ¹³C values for EPS (−25 to −30‰) are consistent with the primary source of carbon for biosynthesis originating from legacy marine organic matter. Comparison of communities to those in lake sediments under an adjacent ice stream (Whillans Subglacial Lake) and near its grounding zone provide seminal evidence for a subglacial metacommunity that is biogeochemically and evolutionarily linked through ice sheet dynamics and the transport of microbes, water, and sediments beneath WAIS

    Enhanced inverse bremsstrahlung heating rates in a strong laser field

    Full text link
    Test particle studies of electron scattering on ions, in an oscillatory electromagnetic field have shown that standard theoretical assumptions of small angle collisions and phase independent orbits are incorrect for electron trajectories with drift velocities smaller than quiver velocity amplitude. This leads to significant enhancement of the electron energy gain and the inverse bremsstrahlung heating rate in strong laser fields. Nonlinear processes such as Coulomb focusing and correlated collisions of electrons being brought back to the same ion by the oscillatory field are responsible for large angle, head-on scattering processes. The statistical importance of these trajectories has been examined for mono-energetic beam-like, Maxwellian and highly anisotropic electron distribution functions. A new scaling of the inverse bremsstrahlung heating rate with drift velocity and laser intensity is discussed.Comment: 12 pages, 12 figure
    corecore