6 research outputs found

    The inositol-1,4,5-trisphosphate receptor regulates autophagy through its interaction with Beclin 1

    No full text
    LE KREMLIN-B.- PARIS 11-BU Méd (940432101) / SudocSudocFranceF

    Beta2-adrenergic receptor regulates cardiac fibroblast autophagy and collagen degradation

    No full text
    Autophagy is a physiological degradative process key to cell survival during nutrient deprivation, cell differentiation and development. It plays a major role in the turnover of damaged macromolecules and organelles, and it has been involved in the pathogenesis of different cardiovascular diseases. Activation of the adrenergic system is commonly associated with cardiac fibrosis and remodeling, and cardiac fibroblasts are key players in these processes. Whether adrenergic stimulation modulates cardiac fibroblast autophagy remains unexplored. In the present study, we aimed at this question and evaluated the effects of b2-adrenergic stimulation upon autophagy. Cultured adult rat cardiac fibroblasts were treated with agonists or antagonists of beta-adrenergic receptors (b-AR), and autophagy was assessed by electron microscopy, GFP-LC3 subcellular distribution, and immunowesternblot of endogenous LC3. The predominant expression of b2-ARs was determined and characterized by radioligand bind

    An integrated mechanism of cardiomyocyte nuclear Ca2+ signaling

    No full text
    © 2014 Elsevier Ltd. In cardiomyocytes, Ca2+ plays a central role in governing both contraction and signaling events that regulate gene expression. Current evidence indicates that discrimination between these two critical functions is achieved by segregating Ca2+ within subcellular microdomains: transcription is regulated by Ca2+ release within nuclear microdomains, and excitation-contraction coupling is regulated by cytosolic Ca2+. Accordingly, a variety of agonists that control cardiomyocyte gene expression, such as endothelin-1, angiotensin-II or insulin-like growth factor-1, share the feature of triggering nuclear Ca2+ signals. However, signaling pathways coupling surface receptor activation to nuclear Ca2+ release, and the phenotypic responses to such signals, differ between agonists. According to earlier hypotheses, the selective control of nuclear Ca2+ signals by activation of plasma membrane receptors relies on the strategic localization of inositol trisphosphate receptors at

    Global polarization of Λ and ¯Λ hyperons in Pb–Pb collisions at the LHC

    No full text
    The global polarization of the Λ and Λ¯¯¯¯ hyperons is measured for Pb-Pb collisions at sNN−−−√ = 2.76 and 5.02 TeV recorded with the ALICE at the LHC. The results are reported differentially as a function of collision centrality and hyperon's transverse momentum (pT) for the range of centrality 5-50%, 0.5<pT<5 GeV/c, and rapidity |y|<0.5. The hyperon global polarization averaged for Pb-Pb collisions at sNN−−−√ = 2.76 and 5.02 TeV is found to be consistent with zero, ⟨PH⟩ (%) ≈ 0.01 ± 0.06 (stat.) ± 0.03 (syst.) in the collision centrality range 15-50%, where the largest signal is expected. The results are compatible with expectations based on an extrapolation from measurements at lower collision energies at RHIC, hydrodynamical model calculations, and empirical estimates based on collision energy dependence of directed flow, all of which predict the global polarization values at LHC energies of the order of 0.01%

    K∗(892)0 and φ(1020) production at midrapidity in pp collisions at √s = 8

    No full text
    The production of K∗(892)0 and ϕ(1020) in pp collisions at s√ = 8 TeV were measured using Run 1 data collected by the ALICE collaboration at the LHC. The pT-differential yields d2N/dydpT in the range 0 < pT < 20 GeV/c for K∗0 and 0.4 < pT < 16 GeV/c for ϕ have been measured at midrapidity |y| < 0.5. Moreover, improved measurements of the K∗(892)0 and ϕ(1020) at s√ = 7 TeV are presented. The collision energy dependence of pT distributions, pT-integrated yields and particle ratios in inelastic pp collisions are examined. The results are also compared with different collision systems. The values of the particle ratios are measured to be similar to those found at other LHC energies. In pp collisions a hardening of the particle spectra is observed with increasing energy, but at the same time it is also observed that the relative particle abundances are independent of the collision energy. The pT-differential yields of K∗0 and ϕ in pp collisions at s√ = 8 TeV are compared with the expectations of different Monte Carlo event generators

    Measurement of Λ(1520) production in pp collisions at √s = 7 TeV and p–Pb collisions at √sNN = 5.02 TeV

    No full text
    The production of the Λ(1520) baryonic resonance has been measured at midrapidity in inelastic pp collisions at s√ = 7 TeV and in p-Pb collisions at sNN−−−√ = 5.02 TeV for non-single diffractive events and in multiplicity classes. The resonance is reconstructed through its hadronic decay channel Λ(1520) → pK− and the charge conjugate with the ALICE detector. The integrated yields and mean transverse momenta are calculated from the measured transverse momentum distributions in pp and p-Pb collisions. The mean transverse momenta follow mass ordering as previously observed for other hyperons in the same collision systems. A Blast-Wave function constrained by other light hadrons (π, K, K0S, p, Λ) describes the shape of the Λ(1520) transverse momentum distribution up to 3.5 GeV/c in p-Pb collisions. In the framework of this model, this observation suggests that the Λ(1520) resonance participates in the same collective radial flow as other light hadrons. The ratio of the yield of Λ(1520) to the yield of the ground state particle Λ remains constant as a function of charged-particle multiplicity, suggesting that there is no net effect of the hadronic phase in p-Pb collisions on the Λ(1520) yield
    corecore