105 research outputs found

    Combined effects for non-autonomous singular biharmonic problems

    Full text link
    We study the existence of nontrivial weak solutions for a class of generalized p(x)p(x)-biharmonic equations with singular nonlinearity and Navier boundary condition. The proofs combine variational and topological arguments. The approach developed in this paper allows for the treatment of several classes of singular biharmonic problems with variable growth arising in applied sciences, including the capillarity equation and the mean curvature problem

    Nonlocal Kirchhoff superlinear equations with indefinite nonlinearity and lack of compactness

    Full text link
    We study the following Kirchhoff equation −(1+b∫R3∣∇u∣2dx)Δu+V(x)u=f(x,u), x∈R3.- \left(1 + b \int_{\mathbb{R}^3} |\nabla u|^2 dx \right) \Delta u + V(x) u = f(x,u), \ x \in \mathbb{R}^3. A special feature of this paper is that the nonlinearity ff and the potential VV are indefinite, hence sign-changing. Under some appropriate assumptions on VV and ff, we prove the existence of two different solutions of the equation via the Ekeland variational principle and Mountain Pass Theorem

    Double-phase problems with reaction of arbitrary growth

    Full text link
    We consider a parametric nonlinear nonhomogeneous elliptic equation, driven by the sum of two differential operators having different structure. The associated energy functional has unbalanced growth and we do not impose any global growth conditions to the reaction term, whose behavior is prescribed only near the origin. Using truncation and comparison techniques and Morse theory, we show that the problem has multiple solutions in the case of high perturbations. We also show that if a symmetry condition is imposed to the reaction term, then we can generate a sequence of distinct nodal solutions with smaller and smaller energies

    Nonlinear singular problems with indefinite potential term

    Full text link
    We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential operator plus an indefinite potential. In the reaction we have the competing effects of a singular term and of concave and convex nonlinearities. In this paper the concave term is parametric. We prove a bifurcation-type theorem describing the changes in the set of positive solutions as the positive parameter λ\lambda varies. This work continues our research published in arXiv:2004.12583, where ξ≡0\xi \equiv 0 and in the reaction the parametric term is the singular one.Comment: arXiv admin note: text overlap with arXiv:2004.1258

    Positive solutions for nonvariational Robin problems

    Full text link
    We study a nonlinear Robin problem driven by the pp-Laplacian and with a reaction term depending on the gradient (the convection term). Using the theory of nonlinear operators of monotone-type and the asymptotic analysis of a suitable perturbation of the original equation, we show the existence of a positive smooth solution

    Robin problems with a general potential and a superlinear reaction

    Full text link
    We consider semilinear Robin problems driven by the negative Laplacian plus an indefinite potential and with a superlinear reaction term which need not satisfy the Ambrosetti-Rabinowitz condition. We prove existence and multiplicity theorems (producing also an infinity of smooth solutions) using variational tools, truncation and perturbation techniques and Morse theory (critical groups)
    • …
    corecore