35 research outputs found
Generation of a set of isogenic iPSC lines carrying all APOE genetic variants (Ɛ2/Ɛ3/Ɛ4) and knock-out for the study of APOE biology in health and disease
APOE genotype is the strongest genetic risk factor for Alzheimer’s Disease (AD). The low degree of homology between mouse and human APOE is a concerning issue in preclinical models currently used to study the role of this gene in AD pathophysiology. A key objective of ADAPTED (Alzheimer’s Disease Apolipoprotein Pathology for Treatment Elucidation and Development) project was to generate in vitro models that better recapitulate human APOE biology. We describe a new set of induced pluripotent stem cells (iPSC) lines carrying common APOE variants (Ɛ2, Ɛ3, and Ɛ3/Ɛ4) and a knock-out isogenic to the parental APOE Ɛ4/Ɛ4 line (UKBi011-A).This study was funded by the ADAPTED (Alzheimer’s Disease Apolipoprotein Pathology for Treatment Elucidation and Development) consortium which has received funding from the Innovative Medicines Initiative 2 Joint Undertaking under Grant Agreement No 115975. This Joint Undertaking receives support from the European Union’s Horizon 2020 research and innovation programme and the European Federation of Pharmaceutical Industries and Associations
SoxD genes are required for adult neural stem cell activation
19 páginas, 6 figuras. Supplemental information can be found online at https://doi.org/10.1016/j.
celrep.2022.110313.The adult neurogenic niche in the hippocampus is maintained through activation of reversibly quiescent neural stem cells (NSCs) with radial glia-like morphology (RGLs). Here, we show that the expression of SoxD transcription factors Sox5 and Sox6 is enriched in activated RGLs. Using inducible deletion of Sox5 or Sox6 in the adult mouse brain, we show that both genes are required for RGL activation and the generation of new neurons. Conversely, Sox5 overexpression in cultured NSCs interferes with entry in quiescence. Mechanistically, expression of the proneural protein Ascl1 (a key RGL regulator) is severely downregulated in SoxD-deficient RGLs, and Ascl1 transcription relies on conserved Sox motifs. Additionally, loss of Sox5 hinders the RGL activation driven by neurogenic stimuli such as environmental enrichment. Altogether, our data suggest that SoxD genes are key mediators in the transition of adult RGLs from quiescence to an activated mitotic state under physiological situations.This work was funded by grants to A.V.M. from the Spanish MICINN
(SAF2017-85717-R, PID2020-112989RB-I00) and F. Alicia Koplowitz (2018)
and to H.M. from the Spanish MICINN (SAF2015-70433-R, PID2019-
111225RB-I00) and PROMETEO/2018/055 from Generalitat ValencianaPeer reviewe
Adenosine A2A receptors modulate BDNF both in normal conditions and in experimental models of Huntington’s disease
Brain-derived neurotrophic factor (BDNF), a member of the neurotrophin family, enhances synaptic transmission and regulates neuronal proliferation and survival. Functional interactions between adenosine A2A receptors (A2ARs) and BDNF have been recently reported. In this article, we report some recent findings from our group showing that A2ARs regulate both BDNF functions and levels in the brain. Whereas BDNF (10 ng/ml) increased the slope of excitatory postsynaptic field potentials (fEPSPs) in hippocampal slices from wild-type (WT) mice, it was completely ineffective in slices taken from A2AR knock-out (KO) mice. Furthermore, enzyme immunoassay studies showed a significant reduction in hippocampal BDNF levels in A2AR KO vs. WT mice. Having found an even marked reduction in the striatum of A2AR KO mice, and as both BDNF and A2ARs have been implicated in the pathogenesis of Huntington’s disease (HD), an inherited striatal neurodegenerative disease, we then evaluated whether the pharmacological blockade of A2ARs could influence striatal levels of BDNF in an experimental model of HD-like striatal degeneration (quinolinic acid-lesioned rats) and in a transgenic mice model of HD (R6/2 mice). In both QA-lesioned rats and early symptomatic R6/2 mice (8 weeks), the systemic administration of the A2AR antagonist SCH58261 significantly reduced striatal BDNF levels. These results indicate that the presence and the tonic activation of A2ARs are necessary to allow BDNF-induced potentiation of synaptic transmission and to sustain a normal BDNF tone. The possible functional consequences of reducing striatal BDNF levels in HD models need further investigation
Selective Vulnerability in Striosomes and in the Nigrostriatal Dopaminergic Pathway After Methamphetamine Administration: Early Loss of TH in Striosomes After Methamphetamine
Methamphetamine (METH), a commonly abused psychostimulant, causes dopamine neurotoxicity in humans, rodents, and nonhuman primates. This study examined the selective neuroanatomical pattern of dopaminergic neurotoxicity induced by METH in the mouse striatum. We examined the effect of METH on tyrosine hydroxylase (TH) and dopamine transporter (DAT) immunoreactivity in the different compartments of the striatum and in the nucleus accumbens. The levels of dopamine and its metabolites, 3,4-dihidroxyphenylacetic acid and homovanillic acid, as well as serotonin (5-HT) and its metabolite, 5-hydroxyindolacetic acid, were also quantified in the striatum. Mice were given three injections of METH (4 mg/kg, i.p.) at 3 h intervals and sacrificed 7 days later. This repeated METH injection induced a hyperthermic response and a decrease in striatal concentrations of dopamine and its metabolites without affecting 5-HT concentrations. In addition, the drug caused a reduction in TH- and DAT-immunoreactivity when compared to saline-treated animals. Interestingly, there was a significantly greater loss of TH- and DAT-immunoreactivity in striosomes than in the matrix. The predominant loss of dopaminergic terminals in the striosomes occurred along the rostrocaudal axis of the striatum. In contrast, METH did not decrease TH- or DAT-immunoreactivity in the nucleus accumbens. These results provide the first evidence that compartments of the mouse striatum, striosomes and matrix, and mesolimbic and nigrostriatal pathways have different vulnerability to METH. This pattern is similar to that observed with other neurotoxins such as MPTP, the most widely used model of Parkinson’s disease, in early Huntington’s disease and hypoxic/ischemic injury, suggesting that these conditions might share mechanisms of neurotoxicity
Distinct effects of BDNF and NT-3 on the dendrites and presynaptic boutons of developing olfactory bulb GABAergic interneurons in vitro
Brain-derived neurotrophic factor (BDNF) and neurotrophin 3 (NT-3) are known to regulate neuronal morphology and the formation of neural circuits, yet the neuronal targets of each neurotrophin are still to be defined. To address how these neurotrophins regulate the morphological and synaptic differentiation of developing olfactory bulb (OB) GABAergic interneurons, we analyzed the effect of BDNF and NT-3 on GABA+-neurons and on different subtypes of these neurons: tyrosine hydroxylase (TH+); calretinin (Calr+); calbindin (Calb+); and parvalbumin (PVA+). These cells were generated from cultured embryonic mouse olfactory bulb neural stem cells (eOBNSCs) and after 14 days in vitro (DIV), when the neurons expressed TrkB and/or TrkC receptors, BDNF and NT-3 did not significantly change the number of neurons. However, long-term BDNF treatment did produce a longer total dendrite length and/or more dendritic branches in all the interneuron populations studied, except for PVA+-neurons. Similarly, BDNF caused an increase in the cell body perimeter in all the interneuron populations analyzed, except for PVA+-neurons. GABA+- and TH+-neurons were also studied at 21 DIV, when BDNF produced significantly longer neurites with no clear change in their number. Notably, these neurons developed synaptophysin+ boutons at 21 DIV, the size of which augmented significantly following exposure to either BDNF or NT-3. Our results show that in conditions that maintain neuronal survival, BDNF but not NT-3 promotes the morphological differentiation of developing OB interneurons in a cell-type-specific manner. In addition, our findings suggest that BDNF and NT-3 may promote synapse maturation by enhancing the size of synaptic boutons.This study was funded by grants from MINECO (Grant Numbers: SAF2013-47596-R, SAF2016-80419-R and CIBERNED CB06/05/0065), the Comunidad de Madrid (Grant Number S2011/ BMD-2336) and Fundación Ramón Areces (Grant Number CIVP18A3941) to C.V
Fibroblast growth factor-2 increases the expression of neurogenic genes and promotes the migration and differentiation of neurons derived from transplanted neural stem/progenitor cells
The capacity of neural stem cells (NSC) to generate different types of neurons and glia depends on the action of intrinsic determinants and extracellular signals. Here, we isolated adult olfactory bulb stem cells (aOBSC) that express nestin, RC2 and Sox2, and that have the capacity to generate neurons possessing mature features in culture and in vivo. The differentiation of aOBSC into neurons and glia, as well as their genetic profile, was compared to that of embryonic OBSC (eOBSC) and ganglionic eminence stem cells (GESC). While these eOBSC express neurogenin (Ngn) 1 and 2, two telencephalic dorsal markers, GESC only express Ngn2. Adult OBSC express either little or no detectable Ngn1 and 2, and they produced significantly fewer neurons in culture than eOBSC. By contrast, Dlx2 transcripts (a telencephalic ventral marker) were only clearly detected in GESC. When transplanted into the early postnatal P5-P7 OB, each of the three populations gave rise to cells with a distinct pattern of neuronal migration and/or dendritic arborization. Overall, these findings suggest that cultured NSC partially maintain their regional and temporal specification. Notably, significant neuronal migration and differentiation were only observed in vivo when the NSC were briefly exposed to fibroblast growth factor-2 (FGF-2) before grafting, a treatment that enhanced the neurogenin expression. Hence, the migration and maturation of neurons derived from transplanted NSC can be promoted by upregulating neurogenic gene expression with FGF-2. © 2009 IBRO.Peer Reviewe
Pax6 Is essential for the maintenance and multi-lineage differentiation of neural stem cells, and for neuronal incorporation into the adult olfactory bulb
© 2014 Mary Ann Liebert, Inc. The paired type homeobox 6 (Pax6) transcription factor (TF) regulates multiple aspects of neural stem cell (NSC) and neuron development in the embryonic central nervous system. However, less is known about the role of Pax6 in the maintenance and differentiation of adult NSCs and in adult neurogenesis. Using the +/SeyDey mouse, we have analyzed how Pax6 heterozygosis influences the self-renewal and proliferation of adult olfactory bulb stem cells (aOBSCs). In addition, we assessed its influence on neural differentiation, neuronal incorporation, and cell death in the adult OB, both in vivo and in vitro. Our results indicate that the Pax6 mutation alters Nestin+-cell proliferation in vivo, as well as self-renewal, proliferation, and survival of aOBSCs in vitro although a subpopulation of +/SeyDey progenitors is able to expand partially similar to wild-type progenitors. This mutation also impairs aOBSC differentiation into neurons and oligodendrocytes, whereas it increases cell death while preserving astrocyte survival and differentiation. Furthermore, Pax6 heterozygosis causes a reduction in the variety of neurochemical interneuron subtypes generated from aOBSCs in vitro and in the incorporation of newly generated neurons into the OB in vivo. Our findings support an important role of Pax6 in the maintenance of aOBSCs by regulating cell death, self-renewal, and cell fate, as well as in neuronal incorporation into the adult OB. They also suggest that deregulation of the cell cycle machinery and TF expression in aOBSCs which are deficient in Pax6 may be at the origin of the phenotypes observed in this adult NSC population.Peer Reviewe
Modulation of the PI3Kinase/Akt signalling pathway by IGF-I and PTEN regulates the differentiation of neural ítem/precursor cells
10 páginas, 8 figuras -- PAGS nros. 2739-2748Neural stem cells depend on insulin-like growth factor I (IGF-I) for differentiation. We analysed how activation and inhibition of the PI 3-kinase–Akt signalling affects the number and differentiation of mouse olfactory bulb stem cells (OBSCs). Stimulation of the pathway with insulin and/or IGF-I, led to an increase in Akt phosphorylated on residues Ser473 and Thr308 (P-AktSer473 and P-AktThr308, respectively) in proliferating OBSCs, and in differentiating cells. Conversely, P-AktSer473 levels decreased by 50% in the OB of embryonic day 16.5-18.5 IGF-I knockout mouse embryos. Overexpression of PTEN, a negative regulator of the PI 3-kinase pathway, caused a reduction in the basal levels of P-AktSer473 and P-AktThr308 and a minor reduction in IGF-I-stimulated P-AktSer473. Although PTEN overexpression decreased the proportion of neurons and astrocytes in the absence of insulin/IGF-I, it did not alter the proliferation or survival of OBSCs. Accordingly, overexpression of a catalytically inactive PTEN mutant promoted OBSCs differentiation. Inhibition of PI 3-kinase by LY294002 produced strong and moderate reductions in IGF-I-stimulated P-AktSer473 and P-AktThr308, respectively. Consequently, LY294002 reduced the proliferation of OBSCs and the number of neurons and astrocytes, and also augmented cell death. These findings indicate that OBSC differentiation is more sensitive to lower basal levels of P-Akt than proliferation or death. By regulating P-Akt levels in opposite ways, IGF-I and PTEN contribute to the fine control of neurogenesis in the olfactory bulbThis work was funded by the grants from the MEC (Spain) BFU 2004-2352 to F.d.P., SAF2004-05798 to C.V.-A. and BMC 2003-07751 to E.J.d.l.R., and from the Fundación "la Caixa" NE03/72-02 to C.V.-A. G.O., M.J.Y.-B, E.V.-V. and H.R.M.-G. were supported by doctoral fellowships either from the MEC or the "Comunidad Autónoma de Madrid"Peer reviewe
GBA1 MUTATIONS ALTER NEURONAL FUNCTION AND STRUCTURE OF iPSC-DERIVED NEURONS FROM PARKINSON¿S DISEASE PATIENTS.
Comunicación presentada a Global Summit on Neurodegenerative Diseases NEURO 2020/2022Mutations in the glucocerebrosidase1 (GBA1) gene are major risk factors for Parkinson¿s disease (PD) and dementia with Lewy bodies. To investigate the impact of GBA1 mutations on neuronal survival, functional maturation and neuronal dysfunction-degeneration, we have obtained dopaminergic neurons from induced pluripotent stem cells (iPSCs) derived from PD patients carrying the N370S/wt and the L444P/wt mutations in GBA1. The neurons expressed typical markers of mesencephalic dopaminergic neurons (including FOXA2, NURR1, LMX1A, LMX1B, TH, VMAT2, DAT, and GIRK2), released dopamine, fired action potentials and showed synaptic activity, indicating that iPSC-derived dopaminergic neurons reached a high degree of functional maturation. Both N370S/wt and L444P/wt GBA1-neurons presented abundant degeneration bodies, multilamellar bodies, autophagosomes, and Golgi apparatus dictyosomes compared to neurons derived from healthy subjects. Furthermore, electrophysiological recordings showed augmented firing rate of N370S/wt GBA1-neurons and accumulation of alpha-synuclein aggregates. Altogether, our findings indicate that N370S/wt and L444P/wt GBA1 mutations increase dopaminergic neuron vulnerability by producing both similar and distinct molecular, electrical and ultrastructural alterations