37 research outputs found

    Functional Characterization of EngAMS, a P-Loop GTPase of Mycobacterium smegmatis

    Get PDF
    Bacterial P-loop GTPases belong to a family of proteins that selectively hydrolyze a small molecule guanosine tri-phosphate (GTP) to guanosine di-phosphate (GDP) and inorganic phosphate, and regulate several essential cellular activities such as cell division, chromosomal segregation and ribosomal assembly. A comparative genome sequence analysis of different mycobacterial species indicates the presence of multiple P-loop GTPases that exhibit highly conserved motifs. However, an exact function of most of these GTPases in mycobacteria remains elusive. In the present study we characterized the function of a P-loop GTPase in mycobacteria by employing an EngA homologue from Mycobacterium smegmatis, encoded by an open reading frame, designated as MSMEG_3738. Amino acid sequence alignment and phylogenetic analysis suggest that MSMEG_3738 (termed as EngAMS) is highly conserved in mycobacteria. Homology modeling of EngAMS reveals a cloverleaf structure comprising of α/ÎČ fold typical to EngA family of GTPases. Recombinant EngAMS purified from E. coli exhibits a GTP hydrolysis activity which is inhibited by the presence of GDP. Interestingly, the EngAMS protein is co-eluted with 16S and 23S ribosomal RNA during purification and exhibits association with 30S, 50S and 70S ribosomal subunits. Further studies demonstrate that GTP is essential for interaction of EngAMS with 50S subunit of ribosome and specifically C-terminal domains of EngAMS are required to facilitate this interaction. Moreover, EngAMS devoid of N-terminal region interacts well with 50S even in the absence of GTP, indicating a regulatory role of the N-terminal domain in EngAMS-50S interaction

    Heat‐shock‐inducible CRISPR/Cas9 system generates heritable mutations in rice

    No full text
    Summary Transient expression of CRISPR/Cas9 is an effective approach for limiting its activities and improving its precision in genome editing. Here, we describe the heat‐shock‐inducible CRISPR/Cas9 for controlled genome editing, and demonstrate its efficiency in the model crop, rice. Using the soybean heat‐shock protein gene promoter and the rice U3 promoter to express Cas9 and sgRNA, respectively, we developed the heat‐shock (HS)‐inducible CRISPR/Cas9 system, and tested its efficacy in targeted mutagenesis. Two loci were targeted in rice, and the presence of targeted mutations was determined before and after the HS treatment. Only a low rate of targeted mutagenesis was detected before HS (~16%), but an increased rate of mutagenesis was observed after the HS treatment among the transgenic lines (50–63%). Analysis of regenerated plants harboring HS‐CRISPR/Cas9 revealed that targeted mutagenesis was suppressed in the plants but induced by HS, which was detectable by Sanger sequencing after a few weeks of HS treatments. Most importantly, the HS‐induced mutations were transmitted to the progeny at a high rate, generating monoallelic and biallelic mutations that independently segregated from the Cas9 gene. Additionally, off‐target mutations were either undetectable or found at a lower rate in HS‐CRISPR/Cas9 lines as compared to the constitutive‐overexpression CRISPR/Cas9 lines. Taken together, this work shows that HS‐CRISPR/Cas9 is a controlled and reasonably efficient platform for genome editing, and therefore, a promising tool for limiting genome‐wide off‐target effects and improving the precision of genome editing

    Solution-Phase Parallel Synthesis of Acyclic Nucleoside Libraries of Purine, Pyrimidine, and Triazole Acetamides

    No full text
    Molecular diversity plays a pivotal role in modern drug discovery against phenotypic or enzyme-based targets using high throughput screening technology. Under the auspices of the Pilot Scale Library Program of the NIH Roadmap Initiative, we produced and report herein a diverse library of 181 purine, pyrimidine, and 1,2,4-triazole-<i>N</i>-acetamide analogues which were prepared in a parallel high throughput solution-phase reaction format. A set of assorted amines were reacted with several nucleic acid <i>N</i>-acetic acids utilizing HATU as the coupling reagent to produce diverse acyclic nucleoside <i>N</i>-acetamide analogues. These reactions were performed using 24 well reaction blocks and an automatic reagent-dispensing platform under inert atmosphere. The targeted compounds were purified on an automated purification system using solid sample loading prepacked cartridges and prepacked silica gel columns. All compounds were characterized by NMR and HRMS, and were analyzed for purity by HPLC before submission to the Molecular Libraries Small Molecule Repository (MLSMR) at NIH. Initial screening through the Molecular Libraries Probe Production Centers Network (MLPCN) program, indicates that several analogues showed diverse and interesting biological activities
    corecore