4,256 research outputs found

    Effective transport barriers in nontwist systems

    Get PDF
    In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.FAPESPCNPqCAPESMCT/CNEN (Rede Nacional de Fusao)Fundacao AraucariaUS Department of Energy DE-FG05-80ET-53088Physic

    Intermingled basins in coupled Lorenz systems

    Full text link
    We consider a system of two identical linearly coupled Lorenz oscillators, presenting synchro- nization of chaotic motion for a specified range of the coupling strength. We verify the existence of global synchronization and antisynchronization attractors with intermingled basins of attraction, such that the basin of one attractor is riddled with holes belonging to the basin of the other attractor and vice versa. We investigated this phenomenon by verifying the fulfillment of the mathematical requirements for intermingled basins, and also obtained scaling laws that characterize quantitatively the riddling of both basins for this system

    Parametric Amplification in the Dynamic Radiation Force of Acoustic Waves in Fluids

    Full text link
    We report on parametric amplification in dynamic radiation force produced by a bichromatic acoustic beam in a fluid. To explain this effect we develop a theory taking into account the nonlinearity of the fluid. The theory is validated through an experiment to measure the dynamic radiation force on an acrylic sphere. Results exhibit an amplification of 66 dB in water and 80 dB in alcohol as the difference of the frequencies is increased from 10 Hz to 240 kHz

    On the quantumness of correlations in nuclear magnetic resonance

    Full text link
    Nuclear Magnetic Resonance (NMR) was successfully employed to test several protocols and ideas in Quantum Information Science. In most of these implementations the existence of entanglement was ruled out. This fact introduced concerns and questions about the quantum nature of such bench tests. In this article we address some issues related to the non-classical aspects of NMR systems. We discuss some experiments where the quantum aspects of this system are supported by quantum correlations of separable states. Such quantumness, beyond the entanglement-separability paradigm, is revealed via a departure between the quantum and the classical versions of information theory. In this scenario, the concept of quantum discord seems to play an important role. We also present an experimental implementation of an analogous of the single-photon Mach-Zehnder interferometer employing two nuclear spins to encode the interferometric paths. This experiment illustrate how non-classical correlations of separable states may be used to simulate quantum dynamics. The results obtained are completely equivalent to the optical scenario, where entanglement (between two field modes) may be present

    Statics and dynamics of an Ashkin-Teller neural network with low loading

    Full text link
    An Ashkin-Teller neural network, allowing for two types of neurons is considered in the case of low loading as a function of the strength of the respective couplings between these neurons. The storage and retrieval of embedded patterns built from the two types of neurons, with different degrees of (in)dependence is studied. In particular, thermodynamic properties including the existence and stability of Mattis states are discussed. Furthermore, the dynamic behaviour is examined by deriving flow equations for the macroscopic overlap. It is found that for linked patterns the model shows better retrieval properties than a corresponding Hopfield model.Comment: 20 pages, 6 figures, Latex with postscript figures in one tar.gz fil

    Finite Size Effects in Separable Recurrent Neural Networks

    Full text link
    We perform a systematic analytical study of finite size effects in separable recurrent neural network models with sequential dynamics, away from saturation. We find two types of finite size effects: thermal fluctuations, and disorder-induced `frozen' corrections to the mean-field laws. The finite size effects are described by equations that correspond to a time-dependent Ornstein-Uhlenbeck process. We show how the theory can be used to understand and quantify various finite size phenomena in recurrent neural networks, with and without detailed balance.Comment: 24 pages LaTex, with 4 postscript figures include

    The complex channel networks of bone structure

    Full text link
    Bone structure in mammals involves a complex network of channels (Havers and Volkmann channels) required to nourish the bone marrow cells. This work describes how three-dimensional reconstructions of such systems can be obtained and represented in terms of complex networks. Three important findings are reported: (i) the fact that the channel branching density resembles a power law implies the existence of distribution hubs; (ii) the conditional node degree density indicates a clear tendency of connection between nodes with degrees 2 and 4; and (iii) the application of the recently introduced concept of hierarchical clustering coefficient allows the identification of typical scales of channel redistribution. A series of important biological insights is drawn and discussedComment: 3 pages, 1 figure, The following article has been submitted to Applied Physics Letters. If it is published, it will be found online at http://apl.aip.org

    Attractor Modulation and Proliferation in 1+\infty Dimensional Neural Networks

    Full text link
    We extend a recently introduced class of exactly solvable models for recurrent neural networks with competition between 1D nearest neighbour and infinite range information processing. We increase the potential for further frustration and competition in these models, as well as their biological relevance, by adding next-nearest neighbour couplings, and we allow for modulation of the attractors so that we can interpolate continuously between situations with different numbers of stored patterns. Our models are solved by combining mean field and random field techniques. They exhibit increasingly complex phase diagrams with novel phases, separated by multiple first- and second order transitions (dynamical and thermodynamic ones), and, upon modulating the attractor strengths, non-trivial scenarios of phase diagram deformation. Our predictions are in excellent agreement with numerical simulations.Comment: 16 pages, 15 postscript figures, Late
    corecore