5,212 research outputs found
Analytical study of tunneling times in flat histogram Monte Carlo
We present a model for the dynamics in energy space of multicanonical
simulation methods that lends itself to a rather complete analytic
characterization. The dynamics is completely determined by the density of
states. In the \pm J 2D spin glass the transitions between the ground state
level and the first excited one control the long time dynamics. We are able to
calculate the distribution of tunneling times and relate it to the
equilibration time of a starting probability distribution. In this model, and
possibly in any model in which entering and exiting regions with low density of
states are the slowest processes in the simulations, tunneling time can be much
larger (by a factor of O(N)) than the equilibration time of the probability
distribution. We find that these features also hold for the energy projection
of single spin flip dynamics.Comment: 7 pages, 4 figures, published in Europhysics Letters (2005
Cosmological Implications of the Fundamental Relations of X-ray Clusters
Based on the two-parameter family nature of X-ray clusters of galaxies
obtained in a separate paper, we discuss the formation history of clusters and
cosmological parameters of the universe. Utilizing the spherical collapse model
of cluster formation, and assuming that the cluster X-ray core radius is
proportional to the virial radius at the time of the cluster collapse, the
observed relations among the density, radius, and temperature of clusters imply
that cluster formation occurs in a wide range of redshift. The observed
relations favor the low-density universe. Moreover, we find that the model of
is preferable.Comment: 7 pages, 4 figures. To be published in ApJ Letter
Optimal Cosmic-Ray Detection for Nondestructive Read Ramps
Cosmic rays are a known problem in astronomy, causing both loss of data and
data inaccuracy. The problem becomes even more extreme when considering data
from a high-radiation environment, such as in orbit around Earth or outside the
Earth's magnetic field altogether, unprotected, as will be the case for the
James Webb Space Telescope (JWST). For JWST, all the instruments employ
nondestructive readout schemes. The most common of these will be "up the ramp"
sampling, where the detector is read out regularly during the ramp. We study
three methods to correct for cosmic rays in these ramps: a two-point difference
method, a deviation from the fit method, and a y-intercept method. We apply
these methods to simulated nondestructive read ramps with single-sample groups
and varying combinations of flux, number of samples, number of cosmic rays,
cosmic-ray location in the exposure, and cosmic-ray strength. We show that the
y-intercept method is the optimal detection method in the read-noise-dominated
regime, while both the y-intercept method and the two-point difference method
are best in the photon-noise-dominated regime, with the latter requiring fewer
computations.Comment: To be published in PASP. This paper is 12 pages long and includes 15
figure
Effective transport barriers in nontwist systems
In fluids and plasmas with zonal flow reversed shear, a peculiar kind of transport barrier appears in the shearless region, one that is associated with a proper route of transition to chaos. These barriers have been identified in symplectic nontwist maps that model such zonal flows. We use the so-called standard nontwist map, a paradigmatic example of nontwist systems, to analyze the parameter dependence of the transport through a broken shearless barrier. On varying a proper control parameter, we identify the onset of structures with high stickiness that give rise to an effective barrier near the broken shearless curve. Moreover, we show how these stickiness structures, and the concomitant transport reduction in the shearless region, are determined by a homoclinic tangle of the remaining dominant twin island chains. We use the finite-time rotation number, a recently proposed diagnostic, to identify transport barriers that separate different regions of stickiness. The identified barriers are comparable to those obtained by using finite-time Lyapunov exponents.FAPESPCNPqCAPESMCT/CNEN (Rede Nacional de Fusao)Fundacao AraucariaUS Department of Energy DE-FG05-80ET-53088Physic
Mass-Temperature Relation of Galaxy Clusters: A Theoretical Study
Combining conservation of energy throughout nearly-spherical collapse of
galaxy clusters with the virial theorem, we derive the mass-temperature
relation for X-ray clusters of galaxies . The normalization factor
and the scatter of the relation are determined from first principles with
the additional assumption of initial Gaussian random field. We are also able to
reproduce the recently observed break in the M-T relation at T \sim 3 \keV,
based on the scatter in the underlying density field for a low density
CDM cosmology. Finally, by combining observational data of high
redshift clusters with our theoretical formalism, we find a semi-empirical
temperature-mass relation which is expected to hold at redshifts up to unity
with less than 20% error.Comment: 43 pages, 13 figures, One figure is added and minor changes are made.
Accepted for Publication in Ap
- …