4 research outputs found

    Diurnal Variation in Gas Exchange: The Balance between Carbon Fixation and Water Loss

    Get PDF
    Stomatal control of transpiration is critical for maintaining important processes, such as plant water status, leaf temperature, as well as permitting sufficient CO2 diffusion into the leaf to maintain photosynthetic rates (A). Stomatal conductance often closely correlates with A and is thought to control the balance between water loss and carbon gain. It has been suggested that a mesophyll-driven signal coordinates A and stomatal conductance responses to maintain this relationship; however, the signal has yet to be fully elucidated. Despite this correlation under stable environmental conditions, the responses of both parameters vary spatially and temporally and are dependent on species, environment, and plant water status. Most current models neglect these aspects of gas exchange, although it is clear that they play a vital role in the balance of carbon fixation and water loss. Future efforts should consider the dynamic nature of whole-plant gas exchange and how it represents much more than the sum of its individual leaf-level components, and they should take into consideration the long-term effect on gas exchange over time

    Acclimation to fluctuating light impacts the rapidity and diurnal rhythm of stomatal conductance.

    Get PDF
    Plant acclimation to growth light environment has been studied extensively, however, the majority of these studies have focused on light intensity and photo-acclimation, with few studies exploring the impact of dynamic growth light on stomatal acclimation and behavior. In order to assess the impact of growth light regime on stomatal acclimation, we grew plants in three different lighting regimes (with the same average daily intensity); fluctuating with a fixed pattern of light, fluctuating with a randomized pattern of light (sinusoidal), and non-fluctuating (square wave), to assess the effect of light regime dynamics on gas exchange. We demonstrated that gs acclimation is influenced by both intensity and light pattern, modifying the stomatal kinetics at different times of the day resulting in differences in the rapidity and magnitude of the gs response. We also describe and quantify response to an internal signal that uncouples variation in A and gs over the majority of the diurnal period, and represents 25% of the total diurnal gs. This gs response can be characterized by a Gaussian element and when incorporated into the widely used Ball-Berry Model greatly improved the prediction of gs in a dynamic environment. From these findings we conclude that acclimation of gs to growth light could be an important strategy for maintaining carbon fixation and overall plant water status, and should be considered when inferring responses in the field from laboratory based experiments

    Temporal Dynamics of Stomatal Behavior: Modeling and Implications for Photosynthesis and Water Use.

    Get PDF
    An analysis of stomatal behavior reveals the importance of modeling slow stomatal responses and the impacts on photosynthesis under dynamic light environments

    Guard Cell Starch Degradation Yields Glucose for Rapid Stomatal Opening in Arabidopsis.

    Get PDF
    Starch in Arabidopsis (Arabidopsis thaliana) guard cells is rapidly degraded at the start of the day by the glucan hydrolases α-AMYLASE3 (AMY3) and β-AMYLASE1 (BAM1) to promote stomatal opening. This process is activated via phototropin-mediated blue light signaling downstream of the plasma membrane H+-ATPase. It remains unknown how guard cell starch degradation integrates with light-regulated membrane transport processes in the fine control of stomatal opening kinetics. We report that H+, K+, and Cl- transport across the guard cell plasma membrane is unaltered in the amy3 bam1 mutant, suggesting that starch degradation products do not directly affect the capacity to transport ions. Enzymatic quantification revealed that after 30 min of blue light illumination, amy3 bam1 guard cells had similar malate levels as the wild type, but had dramatically altered sugar homeostasis, with almost undetectable amounts of Glc. Thus, Glc, not malate, is the major starch-derived metabolite in Arabidopsis guard cells. We further show that impaired starch degradation in the amy3 bam1 mutant resulted in an increase in the time constant for opening of 40 min. We conclude that rapid starch degradation at dawn is required to maintain the cytoplasmic sugar pool, clearly needed for fast stomatal opening. The conversion and exchange of metabolites between subcellular compartments therefore coordinates the energetic and metabolic status of the cell with membrane ion transport
    corecore