15 research outputs found
Enhancer-promoter interactions become more instructive in the transition from cell-fate specification to tissue differentiation.
To regulate expression, enhancers must come in proximity to their target gene. However, the relationship between the timing of enhancer-promoter (E-P) proximity and activity remains unclear, with examples of uncoupled, anticorrelated and correlated interactions. To assess this, we selected 600 characterized enhancers or promoters with tissue-specific activity in Drosophila embryos and performed Capture-C in FACS-purified myogenic or neurogenic cells during specification and tissue differentiation. This enabled direct comparison between E-P proximity and activity transitioning from OFF-to-ON and ON-to-OFF states across developmental conditions. This showed remarkably similar E-P topologies between specified muscle and neuronal cells, which are uncoupled from activity. During tissue differentiation, many new distal interactions emerge where changes in E-P proximity reflect changes in activity. The mode of E-P regulation therefore appears to change as embryogenesis proceeds, from largely permissive topologies during cell-fate specification to more instructive regulation during terminal tissue differentiation, when E-P proximity is coupled to activation
The degree of enhancer or promoter activity is reflected by the levels and directionality of eRNA transcription
Gene expression is regulated by promoters, which initiate transcription, and enhancers, which control their temporal and spatial activity. However, the discovery that mammalian enhancers also initiate transcription questions the inherent differences between enhancers and promoters. Here, we investigate the transcriptional properties of enhancers during Drosophila embryogenesis using characterized developmental enhancers. We show that while the timing of enhancer transcription is generally correlated with enhancer activity, the levels and directionality of transcription are highly varied among active enhancers. To assess how this impacts function, we developed a dual transgenic assay to simultaneously measure enhancer and promoter activities from a single element in the same embryo. Extensive transgenic analysis revealed a relationship between the direction of endogenous transcription and the ability to function as an enhancer or promoter in vivo, although enhancer RNA (eRNA) production and activity are not always strictly coupled. Some enhancers (mainly bidirectional) can act as weak promoters, producing overlapping spatio–temporal expression. Conversely, bidirectional promoters often act as strong enhancers, while unidirectional promoters generally cannot. The balance between enhancer and promoter activity is generally reflected in the levels and directionality of eRNA transcription and is likely an inherent sequence property of the elements themselves.Fil: Mikhaylichenko, Olga. European Molecular Biology Laboratory; AlemaniaFil: Bondarenko, Vladyslav. European Molecular Biology Laboratory; AlemaniaFil: Harnett, Dermot. European Molecular Biology Laboratory; AlemaniaFil: Schor, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; ArgentinaFil: Males, Matilda. European Molecular Biology Laboratory; AlemaniaFil: Viales, Rebecca R.. European Molecular Biology Laboratory; AlemaniaFil: Furlong, Eileen E. M.. European Molecular Biology Laboratory; Alemani
Non-coding RNA Expression, Function, and Variation during Drosophila Embryogenesis
Long non-coding RNAs (lncRNAs) can often function in the regulation of gene expression during development; however, their generality as essential regulators in developmental processes and organismal phenotypes remains unclear. Here, we performed a tailored investigation of lncRNA expression and function during Drosophila embryogenesis, interrogating multiple stages, tissue specificity, nuclear localization, and genetic backgrounds. Our results almost double the number of annotated lncRNAs expressed at these embryonic stages. lncRNA levels are generally positively correlated with those of their neighboring genes, with little evidence of transcriptional interference. Using fluorescent in situ hybridization, we report the spatiotemporal expression of 15 new lncRNAs, revealing very dynamic tissue-specific patterns. Despite this, deletion of selected lncRNA genes had no obvious developmental defects or effects on viability under standard and stressed conditions. However, two lncRNA deletions resulted in modest expression changes of a small number of genes, suggesting that they fine-tune expression of non-essential genes. Several lncRNAs have strain-specific expression, indicating that they are not fixed within the population. This intra-species variation across genetic backgrounds may thereby be a useful tool to distinguish rapidly evolving lncRNAs with as yet non-essential roles.Fil: Schor, Ignacio Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Fisiología, Biología Molecular y Neurociencias. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Fisiología, Biología Molecular y Neurociencias; Argentina. European Molecular Biology Laboratory; AlemaniaFil: Bussotti, Giovanni. European Bioinformatics Institute; Reino UnidoFil: Maleš, Matilda. European Molecular Biology Laboratory; AlemaniaFil: Forneris, Mattia. European Molecular Biology Laboratory; AlemaniaFil: Viales, Rebecca R.. European Molecular Biology Laboratory; AlemaniaFil: Enright, Anton J.. European Bioinformatics Institute; Reino UnidoFil: Furlong, Eileen E. M.. European Molecular Biology Laboratory; Alemani
Lineage-resolved enhancer and promoter usage during a time course of embryogenesis
Enhancers are essential drivers of cell states, yet the relationship between accessibility, regulatory activity, and in vivo lineage commitment during embryogenesis remains poorly understood. Here, we measure chromatin accessibility in isolated neural and mesodermal lineages across a time course of Drosophila embryogenesis. Promoters, including tissue-specific genes, are often constitutively open, even in contexts where the gene is not expressed. In contrast, the majority of distal elements have dynamic, tissue-specific accessibility. Enhancer priming appears rarely within a lineage, perhaps reflecting the speed of Drosophila embryogenesis. However, many tissue-specific enhancers are accessible in other lineages early on and become progressively closed as embryogenesis proceeds. We demonstrate the usefulness of this tissue- and time-resolved resource to definitively identify single-cell clusters, to uncover predictive motifs, and to identify many regulators of tissue development. For one such predicted neural regulator, l(3)neo38, we generate a loss-of-function mutant and uncover an essential role for neuromuscular junction and brain development
Fluorescence-activated cell sorting-based isolation and characterization of neural stem cells from the adult zebrafish telencephalon.
Adult mammalian brain, including humans, has rather limited addition of new neurons and poor regenerative capacity. In contrast, neural stem cells (NSC) with glial identity and neurogenesis are highly abundant throughout the adult zebrafish brain. Importantly, the activation of NSC and production of new neurons in response to injuries lead to the brain regeneration in zebrafish brain. Therefore, understanding of the molecular pathways regulating NSC behavior in response to injury is crucial in order to set the basis for experimental modification of these pathways in glial cells after injury in the mammalian brain and to elicit neuronal regeneration. Here, we describe the procedure that we successfully used to prospectively isolate NSCs from adult zebrafish telencephalon, extract RNA, and prepare cDNA libraries for next generation sequencing (NGS) and full transcriptome analysis as the first step toward understanding regulatory mechanisms leading to restorative neurogenesis in zebrafish. Moreover, we describe an alternative approach to analyze antigenic properties of NSC in the adult zebrafish brain using intracellular fluorescence activated cell sorting (FACS). We employ this method to analyze the number of proliferating NSCs positive for proliferating cell nuclear antigen (PCNA) in the prospectively isolated population of stem cells