10 research outputs found

    Enhancement of protective vaccine-induced antibody titer to swine diseases and growth performance by Amino-Zn, yucca extract, and β-mannanase feed additive in wean-finishing pigs

    Get PDF
    The primary purpose of this research is to determine the effect of Amino-Zn (AZn), Yucca schidigera extract (YE), and β-mannanase enzyme supplementation on growth performance, nutrient digestibility, fecal gas emission, and immune response in pigs. A total of 180 crossbred pigs (6.57 ± 1 kg) were randomly assigned to one of three dietary treatments: CON-corn soybean meal (basal diet); TRT1-CON +1,000 ppm AZn + 0.07% yucca extract (YE) + 0.05% β-mannanase; and TRT2-CON +2,000 ppm AZn + 0.07% YE+ 0.05% β-mannanase for 22 weeks. Each treatment had 12 replicates with 5 pigs per pen. Pigs fed a diet supplemented with AZn, YE, and β-mannanase linearly increased (p < 0.05) BW and average daily gain at weeks 6, 12, 17, and 18. In contrast, the gain-to-feed ratio showed a linear increase (p < 0.05) from weeks 6 to 17 and the overall trial period. Moreover, the inclusion of experimental diets linearly decreased (p > 0.05) noxious gas emissions such as ammonia, hydrogen sulfide, acetic acid, carbon dioxide, and methyl mercaptans. The dietary inclusion of AZn, YE, and β-mannanase significantly increased the serological immune responses to Mycoplasma hyopneumoniae (MH) and foot-and-mouth disease virus (FMDV-O type) at the end of week 6 and porcine circovirus-2 (PCV-2) at week 19. Based on this result, we infer that the combination of AZn, YE, and β-mannanase supplement would serve as a novel in-feed additive to enhance growth performance and act as a boosting agent and immune stimulatory to increase the efficacy of swine vaccinations

    Inclusion of probiotic (Lactobacillus plantarum) in high and low nutrient density diets reveals a positive effect on the growth performance, nutrient digestibility, gas emission, and blood profile in growing pigs

    No full text
    A total of 160 growing pigs (24.69 1.89 kg) were randomly assigned to 1 of 4 treatments in a 2 x 2 factorial design with two different levels of nutrient density diet with or without 0.3 % probiotic (Lactobacillus plantarum). Each treatment has 8 replicates with 5 pigs (3 gilts and 2 barrows) per pen. At the end of the trial, pigs fed 0.3% probiotic supplement has significantly increased the body weight, while average daily gain and gain to feed ratio was significantly increased in both probiotic and high nutrient density (HD) diet. The nutrient digestibility of dry matter was significantly increased in pigs fed HD diet whereas, nitrogen and energy digestibility and blood characters immunoglobulin and lymphocyte counts were significantly increased in both HD and probiotic groups. Inclusion of HD diet with 0.3% probiotic had significantly decreased NH3 and H2S gas emission. Moreover, nitrogen and energy showed a significant interaction between probiotic and density diet. In summary, dietary probiotics with HD diet had positively enhanced the growth performance, nutrient digestibility, blood profile and reduced gas emission. We suggest that 0.3% probiotic with HD diet could serve as an alternative feed additive to enhance the growth performance of growing pigs.The accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    The Effect of Black Pepper (Piperine) Extract Supplementation on Growth Performance, Nutrient Digestibility, Fecal Microbial, Fecal Gas Emission, and Meat Quality of Finishing Pigs

    No full text
    The study was conducted to assess the effect of black pepper extract (BPE) supplementation on the growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs. A total of 180 crossbred [(Landrace × Yorkshire) × Duroc] finishing pigs with average initial body weight (BW) of 53.7 ± 1.42 kg were used in 10-week trial and allotted to 6 dietary treatments (6 replications pens/treatment with 5 pigs per pen). The dietary treatments were: CON (basal diet), TRT1-CON + 0.025% BPE, TRT2-CON + 0.05% BPE, TRT3-CON + 0.1% BPE, TRT4-CON + 0.2% BPE, TRT5-CON + 0.4% BPE. Linear increase in body weight gain (BWG) (p = 0.038, 0.006) and average daily gain (ADG) were observed (p = 0.035, 0.007,and 0.006 respectively), during the overall trial in pigs fed increasing levels of BPE in supplemented diet compared to control. The dietary supplementation of BPE showed a linear increase (p = 0.007) in gain-to-feed ratio (G:F) at week 10. However, there were no significant results observed on average daily feed intake (ADFI) during the overall experiment. The total tract digestibility of dry matter (DM) was linearly improved (p = 0.053) with graded levels of BPE. In addition, BPE diet supplementation had linearly increased fecal Lactobacillus counts (p = 0.048) and decreased Escherichia coli counts (p = 0.031) in pigs at week 10. Furthermore, NH3, methyl mercaptans, and acetic acid was linearly decreased (p = 0.023, 0.056, 0.054) in pigs fed graded level of BPE supplementation. The inclusion of BPE in pigs’ diet had linearly increased (p = 0.015) backfat thickness at week 10. Thus, we concluded that BPE supplementation had positively enhanced the growth performance, nutrient digestibility, fecal microbial, fecal gas emission, and meat quality of finishing pigs

    Impact of yeast hydrolysate (Saccharomyces cerevisiae) supplementation on the growth performance, nutrient digestibility, fecal microflora, noxious gas emission, blood profile, and meat quality of finishing pigs

    No full text
    A total of 90 finishing pigs (52 1.46kg) were randomly assigned to 1 of 3 dietary treatments as: TRT1- (CON (basal diet)), TRT-2 (CON + 0.05% yeast hydrolysate (YH)), TRT3 – (CON + 0.1% YH) for 8 weeks trial. Each treatment had 6 replications and 5 (3 gilts and 2 barrow) pigs pen. In weeks 4 and 8, YH supplement linearly increased (PThe accepted manuscript in pdf format is listed with the files at the bottom of this page. The presentation of the authors' names and (or) special characters in the title of the manuscript may differ slightly between what is listed on this page and what is listed in the pdf file of the accepted manuscript; that in the pdf file of the accepted manuscript is what was submitted by the author

    Dietary Inclusion of Blood Plasma with Yeast (Saccharomyces cerevisiae) Supplementation Enhanced the Growth Performance, Nutrient Digestibility, Lactobacillus Count, and Reduced Gas Emissions in Weaning Pigs

    No full text
    This experiment was performed to examine the hypothesis that blood plasma (BP) with yeast (Saccharomyces cerevisiae) supplement in the diet of weaning pigs could provoke the growth performance, nutrient digestibility, fecal microbial, and reduce harmful gas excretion. A total of one hundred and eighty healthy piglets were taken and assigned (complete random blocks) to three dietary treatments as: Phase 1: Treatment (TRT) 1-6% BP; TRT 2-3% BP + 3% yeast; TRT 3-6% yeast. Phase 2: TRT 1-3%; BP., TRT 2-1.5% BP + 1.5% yeast; TRT 3- 3% yeast. Phase 3: TRT 1- Control (CON) (Basal diet); TRT 2- CON; TRT 3- CON for six- weeks. Each treatment had twelve replicates and five (three gilts and two barrows) pigs per pen. Dietary inclusion of BP with yeast supplementation significantly increased the body weight of piglets during phase 2 (p = 0.003) and phase 3 (p = 0.032). In addition, TRT2 group piglets had a significant improvement in average daily gain at the end of each phase and overall (p = 0.047, 0.025, 0.018 and 0.012, respectively). At phase 3, TRT2 group piglets showed a significant improvement on nutrient digestibility of dry matter (p = 0.012) and nitrogen (p = 0.040). The fecal microbiota of TRT2 group piglets showed a tendency to increase the number of Lactobacillus counts at phase 1 (p = 0.07) and phase 2 (p = 0.06) as well as, a significant improvement at phase 3 (p = 0.021). In addition, TRT2 group piglets had trend to decrease NH3 (p = 0.074) and H2S (p = 0.069) during phase 2, and significantly reduced NH3 (p = 0.038) and H2S (p = 0.046) at phase 3. However, the fecal score of piglets remains unaffected during the entire trial. At the end of phase 1 piglets’ IgG (p = 0.008) was significantly increased with the inclusion of BP with yeast supplementation. Based on the positive effects on body weight, average daily gain, nutrient digestibility, Lactobacillus count, and reduced gas emission, we suggest that dietary supplement with BP and yeast in the diet of weaned piglet could serve as an excellent alternative to antibiotics growth promoters

    Impact of synergistic blend of organic acids on the performance of late gestating sows and their offspring

    No full text
    This study aims to investigate the effects of in-feed additive synergistic blend of short and medium-chain organic acids (SGG) in sows during late gestation and lactation as well as litter performance. On day 107 of gestation, a total of 150 multiparous (Landrace × Yorkshire) sows were blocked according to parity (2.6) and allocated to one of three dietary treatments: CON – basal diet, SGG-Low – CON + 0.1% SGG and SGG-High – CON + 0.3% SGG. Sows supplemented with SGG-High consumed more lactation feed (p = .04) than sows fed the CON diet. The body weight (BW) and back fat (BF) loss during the lactation period were lower (p ≤ .05) in sows fed SGG supplements. Additionally, sows fed with different levels of SGG-supplement reduced (p = .04) the number of mummified and birth coefficient of variation (p = .03) and improved (p ≤ .05) the survivability of piglets. Also, piglets born to SGG group sows and fed a creep diet from days 5 to 21 of age, showed a tendency to increase (p = .07) BW on day 7, and significant improvements on days 14 (p = .02) and 21 (p < .001), and average daily gain (p < .001) during the overall experimental period. Furthermore, the SGG supplement significantly reduced (p ≤ .05) the number of Clostridium perfringens in faeces of sows on day 7 of lactation. Thus, we infer that the application of 0.1–0.3% of SGG supplement in sow diet and subsequently feeding their offsprings with creep diet would serve as the best option for optimum sow productivity and to enhance pre-weaning growth rate.HIGHLIGHTS The breeding efficiency of sow and the growth rate of piglets are very important for successful pig production. Sows fed with a synergistic blend of short and medium-chain organic acids (SGG) during late gestation and lactation improved the survivability of piglets. Piglets born to sows supplemented with different levels of SSG gained more weight and had a higher litter weight during weaning

    Table_3_Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage.xlsx

    No full text
    The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.</p

    Table_2_Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage.xlsx

    No full text
    The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.</p

    Presentation_1_Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage.pdf

    No full text
    The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.</p

    Table_1_Nourishing neonatal piglets with synthetic milk and Lactobacillus sp. at birth highly modifies the gut microbial communities at the post-weaning stage.xlsx

    No full text
    The importance of probiotics in pig production is widely recognized. However, the precise role of probiotics in regulating the gut microbiota of piglets has not been assessed extensively. Therefore, we intend to examine whether suckling pigs ingesting with synthetic milk (SM) and probiotics along with mother milk has a carryover effect on its growth and gut health at the post-weaning stage. A total of 40 [Duroc× (Yorkshire× Landrace)] neonates with an initial BW of 1.49 ± 0.28 kg were assigned to one of two treatments groups: control (CON) and treatment (TRT). Control group piglets were nourished with synthetic milk, while TRT group piglets were nourished SM with (1 × 109 CFU/g) Lactobacillus sp. probiotics. The treatment group piglets showed higher (p 70% (default) on sequence alignment with the SILVA v138 reference database was 4,474. During week 1, Escherichia-Shigella, Clostridium sensu stricto 1, and Bacteroides were confirmed as the major dominant bacterial genera in both the groups at the genus level. However, during week 2, the relative proportion of Escherichia-Shigella, Clostridium sensu stricto 1, and Proteobacteria was decreased, while that of Lactobacillus and Bacteroidota was increased in pigs receiving the probiotic supplement. During weeks 2 and 3, Firmicutes, Proteobacteria, and Bacteroidota phyla were dominant in both groups. During week 6, the relative proportion of Proteobacteria was slightly increased in both groups. Furthermore, Prevotella was confirmed as the major dominant bacterial genus in both groups during weeks 3 and 6. This study suggests that nourishing neonatal piglets with synthetic milk and Lactobacillus sp. probiotics from birth to 21 days would be beneficial to enhance the gut health of piglets and to overcome post-weaning mortality.</p
    corecore