30 research outputs found

    Conventional radiography requires a MRI-estimated bone volume loss of 20% to 30% to allow certain detection of bone erosions in rheumatoid arthritis metacarpophalangeal joints

    Get PDF
    The aim of this study was to demonstrate the ability of conventional radiography to detect bone erosions of different sizes in metacarpophalangeal (MCP) joints of rheumatoid arthritis (RA) patients using magnetic resonance imaging (MRI) as the standard reference. A 0.2 T Esaote dedicated extremity MRI unit was used to obtain axial and coronal T1-weighted gradient echo images of the dominant 2nd to 5th MCP joints of 69 RA patients. MR images were obtained and evaluated for bone erosions according to the OMERACT recommendations. Conventional radiographs of the 2nd to 5th MCP joints were obtained in posterior-anterior projection and evaluated for bone erosions. The MRI and radiography readers were blinded to each other's assessments. Grade 1 MRI erosions (1% to 10% of bone volume eroded) were detected by radiography in 20%, 4%, 7% and 13% in the 2nd, 3rd, 4th and 5th MCP joint, respectively. Corresponding results for grade 2 erosions (11% to 20% of bone volume eroded) were 42%, 10%, 60% and 24%, and for grade 3 erosions (21% to 30% of bone volume eroded) 75%, 67%, 75% and 100%. All grade 4 (and above) erosions were detected on radiographs. Conventional radiography required a MRI-estimated bone erosion volume of 20% to 30% to allow a certain detection, indicating that MRI is a better method for detection and grading of minor erosive changes in RA MCP joints

    Ultrasonography, magnetic resonance imaging, radiography, and clinical assessment of inflammatory and destructive changes in fingers and toes of patients with psoriatic arthritis.

    Get PDF
    The aim of the present study was to assess ultrasonography (US) for the detection of inflammatory and destructive changes in finger and toe joints, tendons, and entheses in patients with psoriasis-associated arthritis (PsA) by comparison with magnetic resonance imaging (MRI), projection radiography (x-ray), and clinical findings. Fifteen patients with PsA, 5 with rheumatoid arthritis (RA), and 5 healthy control persons were examined by means of US, contrast-enhanced MRI, x-ray, and clinical assessment. Each joint of the 2nd–5th finger (metacarpophalangeal joints, proximal interphalangeal [PIP] joints, and distal interphalangeal [DIP] joints) and 1st–5th metatarsophalangeal joints of both hands and feet were assessed with US for the presence of synovitis, bone erosions, bone proliferations, and capsular/extracapsular power Doppler signal (only in the PIP joints). The 2nd–5th flexor and extensor tendons of the fingers were assessed for the presence of insertional changes and tenosynovitis. One hand was assessed by means of MRI for the aforementioned changes. X-rays of both hands and feet were assessed for bone erosions and proliferations. US was repeated in 8 persons by another ultrasonographer. US and MRI were more sensitive to inflammatory and destructive changes than x-ray and clinical examination, and US showed a good interobserver agreement for bone changes (median 96% absolute agreement) and lower interobserver agreement for inflammatory changes (median 92% absolute agreement). A high absolute agreement (85% to 100%) for all destructive changes and a more moderate absolute agreement (73% to 100%) for the inflammatory pathologies were found between US and MRI. US detected a higher frequency of DIP joint changes in the PsA patients compared with RA patients. In particular, bone changes were found exclusively in PsA DIP joints. Furthermore, bone proliferations were more common and tenosynovitis was less frequent in PsA than RA. For other pathologies, no disease-specific pattern was observed. US and MRI have major potential for improved examination of joints, tendons, and entheses in fingers and toes of patients with PsA
    corecore