133 research outputs found

    Magnetism, FeS colloids, and Origins of Life

    Full text link
    A number of features of living systems: reversible interactions and weak bonds underlying motor-dynamics; gel-sol transitions; cellular connected fractal organization; asymmetry in interactions and organization; quantum coherent phenomena; to name some, can have a natural accounting via physicalphysical interactions, which we therefore seek to incorporate by expanding the horizons of `chemistry-only' approaches to the origins of life. It is suggested that the magnetic 'face' of the minerals from the inorganic world, recognized to have played a pivotal role in initiating Life, may throw light on some of these issues. A magnetic environment in the form of rocks in the Hadean Ocean could have enabled the accretion and therefore an ordered confinement of super-paramagnetic colloids within a structured phase. A moderate H-field can help magnetic nano-particles to not only overcome thermal fluctuations but also harness them. Such controlled dynamics brings in the possibility of accessing quantum effects, which together with frustrations in magnetic ordering and hysteresis (a natural mechanism for a primitive memory) could throw light on the birth of biological information which, as Abel argues, requires a combination of order and complexity. This scenario gains strength from observations of scale-free framboidal forms of the greigite mineral, with a magnetic basis of assembly. And greigite's metabolic potential plays a key role in the mound scenario of Russell and coworkers-an expansion of which is suggested for including magnetism.Comment: 42 pages, 5 figures, to be published in A.R. Memorial volume, Ed Krishnaswami Alladi, Springer 201

    Self-reported medication side effects in an older cohort living independently in the community - the Melbourne Longitudinal Study on Health Ageing (MELSHA) : cross-sectional analysis of prevalence and risk factors

    Get PDF
    Background Medication side effects are an important cause of morbidity, mortality and costs in older people. The aim of our study was to examine prevalence and risk factors for self-reported medication side effects in an older cohort living independently in the community.Methods The Melbourne Longitudinal Study on Healthy Ageing (MELSHA), collected information on those aged 65 years or older living independently in the community and commenced in 1994. Data on medication side effects was collected from the baseline cohort (n = 1000) in face-to-face baseline interviews in 1994 and analysed as cross-sectional data. Risk factors examined were: socio-demographics, health status and medical conditions; medication use and health service factors. Analysis included univariate logistic regression to estimate unadjusted risk and multivariate logistic regression analysis to assess confounding and estimate adjusted risk.Results Self-reported medication side effects were reported by approximately 6.7% (67/1000) of the entire baseline MELSHA cohort, and by 8.5% (65/761) of those on medication. Identified risk factors were increased education level, co-morbidities and health service factors including recency of visiting the pharmacist, attending younger doctors, and their doctor\u27s awareness of their medications. The greatest increase in risk for medication side effects was associated with liver problems and their doctor\u27s awareness of their medications. Aging and gender were not risk factors.Conclusion Prevalence of self-reported medication side effects was comparable with that reported in adults attending General Practices in a primary care setting in Australia. The prevalence and identified risk factors provide further insight and opportunity to develop strategies to address the problem of medication side effects in older people living independently in the community setting. <br /

    CD40L induces multidrug resistance to apoptosis in breast carcinoma and lymphoma cells through caspase independent and dependent pathways

    Get PDF
    BACKGROUND: CD40L was found to reduce doxorubicin-induced apoptosis in non Hodgkin's lymphoma cell lines through caspase-3 dependent mechanism. Whether this represents a general mechanism for other tumor types is unknown. METHODS: The resistance induced by CD40L against apoptosis induced by a panel of cytotoxic chemotherapeutic drugs in non Hodgkin's lymphoma and breast carcinoma cell lines was investigated. RESULTS: Doxorubicin, cisplatyl, etoposide, vinblastin and paclitaxel increased apoptosis in a dose-dependent manner in breast carcinoma as well as in non Hodgkin's lymphoma cell lines. Co-culture with irradiated L cells expressing CD40L significantly reduced the percentage of apoptotic cells in breast carcinoma and non Hodgkin's lymphoma cell lines treated with these drugs. In breast carcinoma cell lines, these 5 drugs induced an inconsistent increase of caspase-3/7 activity, while in non Hodgkin's lymphoma cell lines all 5 drugs increased caspase-3/7 activity up to 28-fold above baseline. Co-culture with CD40L L cells reduced (-39% to -89%) the activation of caspase-3/7 induced by these agents in all 5 non Hodgkin's lymphoma cell lines, but in none of the 2 breast carcinoma cell lines. Co culture with CD40L L cells also blocked the apoptosis induced by exogenous ceramides in breast carcinoma and non Hodgkin's lymphoma cell lines through a caspase-3-like, 8-like and 9-like dependent pathways. CONCLUSION: These results indicate that CD40L expressed on adjacent non tumoral cells induces multidrug resistance to cytotoxic agents and ceramides in both breast carcinoma and non Hodgkin's lymphoma cell lines, albeit through a caspase independent and dependent pathway respectively

    Clinical pharmacology of cancer therapies in older adults

    Get PDF
    This abbreviated review outlines the physiologic changes associated with aging, and examines how these changes may affect the pharmacokinetics and pharmacodynamics of anticancer therapies. We also provide an overview of studies that have been conducted evaluating the pharmacology of anticancer therapies in older adults, and issue a call for further research

    Monitoring of microbial hydrocarbon remediation in the soil

    Get PDF
    Bioremediation of hydrocarbon pollutants is advantageous owing to the cost-effectiveness of the technology and the ubiquity of hydrocarbon-degrading microorganisms in the soil. Soil microbial diversity is affected by hydrocarbon perturbation, thus selective enrichment of hydrocarbon utilizers occurs. Hydrocarbons interact with the soil matrix and soil microorganisms determining the fate of the contaminants relative to their chemical nature and microbial degradative capabilities, respectively. Provided the polluted soil has requisite values for environmental factors that influence microbial activities and there are no inhibitors of microbial metabolism, there is a good chance that there will be a viable and active population of hydrocarbon-utilizing microorganisms in the soil. Microbial methods for monitoring bioremediation of hydrocarbons include chemical, biochemical and microbiological molecular indices that measure rates of microbial activities to show that in the end the target goal of pollutant reduction to a safe and permissible level has been achieved. Enumeration and characterization of hydrocarbon degraders, use of micro titer plate-based most probable number technique, community level physiological profiling, phospholipid fatty acid analysis, 16S rRNA- and other nucleic acid-based molecular fingerprinting techniques, metagenomics, microarray analysis, respirometry and gas chromatography are some of the methods employed in bio-monitoring of hydrocarbon remediation as presented in this review

    Pinpointing beta adrenergic receptor in ageing pathophysiology: victim or executioner? Evidence from crime scenes

    Get PDF
    corecore