23 research outputs found

    Interference of the T cell and antigen-presenting cell costimulatory pathway using CTLA4-Ig (abatacept) prevents Staphylococcal enterotoxin B pathology

    Get PDF
    Abstract Staphylococcal enterotoxin B (SEB) is a bacterial superantigen that binds the receptors in the APC/T cell synapse and causes increased proliferation of T cells and a cytokine storm syndrome in vivo. Exposure to the toxin can be lethal and cause significant pathology in humans. The lack of effective therapies for SEB exposure remains an area of concern, particularly in scenarios of acute mass casualties. We hypothesized that blockade of the T cell costimulatory signal by the CTLA4-Ig synthetic protein (abatacept) could prevent SEB-dependent pathology. In this article, we demonstrate mice treated with a single dose of abatacept 8 h post SEB exposure had reduced pathology compared with control SEB-exposed mice. SEB-exposed mice showed significant reductions in body weight between days 4 and 9, whereas mice exposed to SEB and also treated with abatacept showed no weight loss for the duration of the study, suggesting therapeutic mitigation of SEB-induced morbidity. Histopathology and magnetic resonance imaging demonstrated that SEB mediated lung damage and edema, which were absent after treatment with abatacept. Analysis of plasma and lung tissues from SEB-exposed mice treated with abatacept demonstrated significantly lower levels of IL-6 and IFN-γ (p &amp;lt; 0.0001), which is likely to have resulted in less pathology. In addition, exposure of human and mouse PBMCs to SEB in vitro showed a significant reduction in levels of IL-2 (p &amp;lt; 0.0001) after treatment with abatacept, indicating that T cell proliferation is the main target for intervention. Our findings demonstrate that abatacept is a robust and potentially credible drug to prevent toxic effects from SEB exposure.</jats:p

    Simultaneous evaluation of treatment efficacy and toxicity for bispecific T-cell engager therapeutics in a humanized mouse model.

    Get PDF
    Immuno-oncology (IO)-based therapies such as checkpoint inhibitors, bi-specific antibodies, and CAR-T-cell therapies have shown significant success in the treat- ment of several cancer indications. However, these therapies can result in the de- velopment of severe adverse events, including cytokine release syndrome (CRS). Currently, there is a paucity of in vivo models that can evaluate dose-response relationships for both tumor control and CRS-related safety issues. We tested an in vivo PBMC humanized mouse model to assess both treatment efficacy against specific tumors and the concurrent cytokine release profiles for individual human donors after treatment with a CD19xCD3 bispecific T-cell engager (BiTE). Using this model, we evaluated tumor burden, T-cell activation, and cytokine release in response to bispecific T-cell-engaging antibody in humanized mice generated with different PBMC donors. The results show that PBMC engrafted NOD-scid Il2rgnull mice lacking expression of mouse MHC class I and II (NSG-MHC-DKO mice) and implanted with a tumor xenograft predict both efficacy for tumor control by CD19xCD3 BiTE and stimulated cytokine release. Moreover, our find- ings indicate that this PBMC-engrafted model captures variability among donors for tumor control and cytokine release following treatment. Tumor control and cytokine release were reproducible for the same PBMC donor in separate experi- ments. The PBMC humanized mouse model described here is a sensitive and re- producible platform that identifies specific patient/cancer/therapy combinations for treatment efficacy and development of complications

    Lentiviral Vectors for T Cell Engineering: Clinical Applications, Bioprocessing and Future Perspectives

    Get PDF
    Lentiviral vectors have played a critical role in the emergence of gene-modified cell therapies, specifically T cell therapies. Tisagenlecleucel (Kymriah), axicabtagene ciloleucel (Yescarta) and most recently brexucabtagene autoleucel (Tecartus) are examples of T cell therapies which are now commercially available for distribution after successfully obtaining EMA and FDA approval for the treatment of blood cancers. All three therapies rely on retroviral vectors to transduce the therapeutic chimeric antigen receptor (CAR) into T lymphocytes. Although these innovations represent promising new therapeutic avenues, major obstacles remain in making them readily available tools for medical care. This article reviews the biological principles as well as the bioprocessing of lentiviral (LV) vectors and adoptive T cell therapy. Clinical and engineering successes, shortcomings and future opportunities are also discussed. The development of Good Manufacturing Practice (GMP)-compliant instruments, technologies and protocols will play an essential role in the development of LV-engineered T cell therapies

    Overproduction and Biochemical Characterization of the Chryseobacterium meningosepticum BlaB Metallo-β-Lactamase

    No full text
    The BlaB metallo-β-lactamase of Chryseobacterium meningosepticum CCUG4310 was overproduced in Escherichia coli by means of a T7 promoter-based expression system. The overproducing system, scaled up in a 15-liter fermentor, yielded approximately 10 mg of BlaB protein per liter, mostly released in the culture supernatant. The enzyme was purified by two ion-exchange chromatographic steps with an overall yield of 66%. Analysis of the kinetic parameters revealed efficient activities (k(cat)/K(m) ratios of >10(6) M(−1) s(−1)) toward most penam and carbapenem compounds, with the exception of the 6-α-methoxypenam derivative temocillin and of biapenem, which were poorer substrates. Hydrolysis of cephalosporins was overall less efficient, with a remarkable variability that was largely due to variable affinities of the BlaB enzyme for different compounds. BlaB was also able to hydrolyze serine-β-lactamase inhibitors, including β-iodopenicillanate, sulbactam and, although less efficiently, tazobactam

    A comparative study of matrix metalloproteinase and aggrecanase mediated release of latent cytokines at arthritic joints

    Get PDF
    BACKGROUND: Latent cytokines are engineered by fusing the latency associated peptide (LAP) derived from transforming growth factor-β (TGF-β) with the therapeutic cytokine, in this case interferon-β (IFN-β), via an inflammation-specific matrix metalloproteinase (MMP) cleavage site. OBJECTIVES: To demonstrate latency and specific delivery in vivo and to compare therapeutic efficacy of aggrecanase-mediated release of latent IFN-β in arthritic joints to the original MMP-specific release. METHODS: Recombinant fusion proteins with MMP, aggrecanase or devoid of cleavage site were expressed in CHO cells, purified and characterised in vitro by Western blotting and anti-viral protection assays. Therapeutic efficacy and half-life were assessed in vivo using the mouse collagen-induced arthritis model (CIA) of rheumatoid arthritis and a model of acute paw inflammation, respectively. Transgenic mice with an IFN-regulated luciferase gene were used to assess latency in vivo and targeted delivery to sites of disease. RESULTS: Efficient localised delivery of IFN-β to inflamed paws, with low levels of systemic delivery, was demonstrated in transgenic mice using latent IFN-β. Engineering of latent IFN-β with an aggrecanase-sensitive cleavage site resulted in efficient cleavage by ADAMTS-4, ADAMTS-5 and synovial fluid from arthritic patients, with an extended half-life similar to the MMP-specific molecule and greater therapeutic efficacy in the CIA model. CONCLUSIONS: Latent cytokines require cleavage in vivo for therapeutic efficacy, and they are delivered in a dose dependent fashion only to arthritic joints. The aggrecanase-specific cleavage site is a viable alternative to the MMP cleavage site for the targeting of latent cytokines to arthritic joints

    Cell therapy products: focus on issues with manufacturing and quality control of chimeric antigen receptor T-cell therapies

    Get PDF
    Recent accelerated approvals of Chimeric Antigen Receptor T‐cell (CAR‐T) therapies targeting refractory haematological malignancies underscore the potential for this novel technology platform to provide new therapeutic options for oncology areas with high unmet medical needs. However, these powerful ‘living drugs’ are markedly different to conventional small molecule and biologic therapies on several levels. The highly complex nature and varied composition of CAR‐T based products still requires considerable investigation to resolve the best approaches to ensure reproducible and cost‐effective manufacture, clinical development, and application. This review will focus on key issues for manufacturing and quality control of these exciting new therapeutic modalities, preceded by a brief description of CAR principals and clinical development considerations. © 2018 The Authors. Journal of Chemical Technology & Biotechnology published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry

    Development of the first reference panel for qualification and validation of cytokine release assay platforms - Report of an international collaborative study

    No full text
    Immunomodulatory therapeutics such as monoclonal antibodies (mAb) carry an inherent risk of undesired immune reactions. One such risk is cytokine release syndrome (CRS), a rapid systemic inflammatory response characterized by the secretion of pro-inflammatory cytokines from immune cells. It is crucial for patient safety to correctly identify potential risk of CRS prior to first-in-human dose administration. For this purpose, a variety of in vitro cytokine release assays (CRA) are routinely used as part of the preclinical safety assessment of novel therapeutic mAbs. One of the challenges for the development and comparison of CRA performance is the lack of availability of standard positive and negative control mAbs for use in assay qualification. To address this issue, the National Institute for Biological Standards and Control (NIBSC) developed a reference panel of lyophilised mAbs known to induce CRS in the clinic: human anti-CD52, mouse anti-CD3 and human superagonistic (SA) anti-CD28 mAb manufactured according to the respective published sequences of Campath-1H® (alemtuzumab, IgG1) , Orthoclone OKT-3® (muromonab, IgG2a) and TGN1412 (theralizumab, IgG4), as well as three isotype matched negative controls (human IgG1, mouse IgG2a and human IgG4, respectively). The relative capacity of these control mAbs to stimulate the release of IFN-, IL-2, TNF- and IL-6 in vitro was evaluated in eleven laboratories in an international collaborative study mediated through the HESI Immuno-safety Technical Committee Cytokine Release Assay Working Group. Participants tested the NIBSC mAbs in a variety of CRA platforms established at each institution. This paper presents the results from the centralised cytokine quantification on all the plasma/supernatants corresponding to the stimulation of immune cells in the different CRA platforms by a single concentration of each mAb. Each positive control mAb induced cytokine release in the different CRA tested which was ≥ 3-fold above levels observed with its negative control mAb. There was a high inter-laboratory variability in the levels of cytokines produced, but similar patterns of response were observed across laboratories that replicated the cytokine release patterns previously published for the respective clinical therapeutic mAbs. Therefore, the positive and negative mAbs are suitable as a reference panel for the qualification and validation of CRAs, comparison of different CRA platforms (e.g. solid vs aqueous phase), and intra- and inter-laboratory comparison of CRA performance. Thus, the use of this panel of positive and negative control mAbs will increase the confidence in the robustness of a CRA platform to identify a potential CRS risk for novel immunomodulatory therapeutic candidates
    corecore