410 research outputs found

    Solitary waves in three-dimensional crystal-like structures

    Full text link
    The motion of three-dimensional (3D) solitary waves and solitons in nonlinear crystal-like structures, such as photonic materials, is studied. It is demonstrated that collective excitations in these systems can be tailored to move in particular directions of the 3D system. The effect of modulation instability is studied showing that in some cases it can be delayed by using a lensing factor. Analytical results supported by numerical simulations are presented.Comment: 4 page

    Universal Features of the Time Evolution of Evanescent Modes in a Left-Handed Perfect Lens

    Full text link
    The time evolution of evanescent modes in Pendry's perfect lens proposal for ideally lossless and homogeneous, left-handed materials is analyzed. We show that time development of sub-wavelength resolution exhibits universal features, independent of model details. This is due to the unavoidable near-degeneracy of surface electromagnetic modes in the deep sub-wavelength region. By means of a mechanical analog, it is shown that an intrinsic time scale (missed in stationary studies) has to be associated with any desired lateral resolution. A time-dependent cut-off length emerges, removing the problem of divergences claimed to invalidate Pendry's proposal.Comment: 4 pages, 3 figures, title slightly changed, reference added, minor correction

    Nonlinear properties of left-handed metamaterials

    Full text link
    We analyze nonlinear properties of microstructured materials with negative refraction, the so-called left-handed metamaterials. We consider a two-dimensional periodic structure created by arrays of wires and split-ring resonators embedded into a nonlinear dielectric, and calculate the effective nonlinear electric permittivity and magnetic permeability. We demonstrate that the hysteresis-type dependence of the magnetic permeability on the field intensity allows changing the material from left- to right-handed and back. These effects can be treated as the second-order phase transitions in the transmission properties induced by the variation of an external field.Comment: 4 pages, 3 figure

    Enhanced parametric processes in binary metamaterials

    Full text link
    We suggest double-resonant (binary) metamaterials composed of two types of magnetic resonant elements, and demonstrate that in the nonlinear regime such metamaterials provide unique possibilities for phase-matched parametric interaction and enhanced second-harmonic generation

    Refraction at Media with Negative Refractive Index

    Full text link
    We show that an electromagnetic (EM) wave undergoes negative refraction at the interface between a positive and negative refractive index material. Finite difference time domain (FDTD) simulations are used to study the time evolution of an EM wave as it hits the interface. The wave is trapped temporarily at the interface and after a long time, the wave front moves eventually in the negative direction. This explains why causality and speed of light are not violated in spite of the negative refraction always present in a negative index material.Comment: 5 pages, 4 figures, submitted to Phys. Rev. Let

    Finite-size effects of a left-handed material slab on the image quality

    Full text link
    The characteristics of an imaging system formed by a left-handed material (LHM) slab of finite length are studied, and the influence of the finite length of the slab on the image quality is analyzed. Unusual phenomena such as surface bright spots and negative energy stream at the image side are observed and explained as the cavity effects of surface plasmons excited by the evanescent components of the incident field. For a thin LHM slab, the cavity effects are found rather sensitive to the length of the slab, and the bright spots on the bottom surface of the slab may stretch to the image plane and degrade the image quality.Comment: changes in the content and the title, and also the figure

    Reverse Doppler effect in backward spin waves scattered on acoustic waves

    Full text link
    We report on the observation of reverse Doppler effect in backward spin waves reflected off of surface acoustic waves. The spin waves are excited in a yttrium iron garnet (YIG) film. Simultaneously, acoustic waves are also generated. The strain induced by the acoustic waves in the magnetostrictive YIG film results in the periodic modulation of the magnetic anisotropy in the film. Thus, in effect, a travelling Bragg grating for the spin waves is produced. The backward spin waves reflecting off of this grating exhibit a reverse Doppler shift: shifting down rather than up in frequency when reflecting off of an approaching acoustic wave. Similarly, the spin waves are shifted up in frequency when reflecting from receding acoustic waves.Comment: 4 pages, 3 figure

    Near Field Lenses in Two Dimensions

    Full text link
    It has been shown that a slab of materials with refractive index = -1 behaves like a perfect lens focussing all light to an exact electromagnetic copy of an object. The original lens is limited to producing images the same size as the object, but here we generalise the concept so that images can be magnified. For two dimensional systems, over distances much shorter than the free space wavelength, we apply conformal transformations to the original parallel sided slab generating a variety of new lenses. Although the new lenses are not `perfect' they are able to magnify two dimensional objects. The results apply equally to imaging of electric or magnetic sub wavelength objects in two dimensions. The concepts have potential applications ranging from microwave frequencies to the visible.Comment: PDF fil
    • …
    corecore