4 research outputs found

    LAKE 2.0: A model for temperature, methane, carbon dioxide and oxygen dynamics in lakes

    Get PDF
    A one-dimensional (1-D) model for an enclosed basin (lake) is presented, which reproduces temperature, horizontal velocities, oxygen, carbon dioxide and methane in the basin. All prognostic variables are treated in a unified manner via a generic 1-D transport equation for horizontally averaged property. A water body interacts with underlying sediments. These sediments are represented by a set of vertical columns with heat, moisture and CH4 transport inside. The model is validated vs. a comprehensive observational data set gathered at Kuivajarvi Lake (southern Finland), demonstrating a fair agreement. The value of a key calibration constant, regulating the magnitude of methane production in sediments, corresponded well to that obtained from another two lakes. We demonstrated via surface seiche parameterization that the near-bottom turbulence induced by surface seiches is likely to significantly affect CH4 accumulation there. Furthermore, our results suggest that a gas transfer through thermocline under intense internal seiche motions is a bottleneck in quantifying greenhouse gas dynamics in dimictic lakes, which calls for further research.Peer reviewe

    Conceptual design of a measurement network of the global change

    Get PDF
    The global environment is changing rapidly due to anthropogenic emissions and actions. Such activities modify aerosol and greenhouse gas concentrations in the atmosphere, leading to regional and global climate change and affecting, e.g., food and fresh-water security, sustainable use of natural resources and even demography. Here we present a conceptual design of a global, hierarchical observation network that can provide tools and increased understanding to tackle the inter-connected environmental and societal challenges that we will face in the coming decades. The philosophy behind the conceptual design relies on physical conservation laws of mass, energy and momentum, as well as on concentration gradients that act as driving forces for the atmosphere-biosphere exchange. The network is composed of standard, flux and/or advanced and flagship stations, each of which having specific and identified tasks. Each ecosystem type on the globe has its own characteristic features that have to be taken into consideration. The hierarchical network as a whole is able to tackle problems related to large spatial scales, heterogeneity of ecosystems and their complexity. The most comprehensive observations are envisioned to occur in flagship stations, with which the process-level understanding can be expanded to continental and global scales together with advanced data analysis, Earth system modelling and satellite remote sensing. The denser network of the flux and standard stations allows application and up-scaling of the results obtained from flagship stations to the global level.Peer reviewe

    Effects of competition, drought stress and photosynthetic productivity on the radial growth of white spruce in western Canada

    No full text
    Understanding the complex interactions of competition, climate warming-induced drought stress, and photosynthetic productivity on the radial growth of trees is central to linking climate change impacts on tree growth, stand structure and in general, forest productivity. Using a mixed modelling approach, a stand-level photosynthetic production model, climate, stand competition and tree-ring data from mixedwood stands in western Canada, we investigated the radial growth response of white spruce (Picea glauca (Moench.) Voss) to simulated annual photosynthetic production, simulated drought stress, and tree and stand level competition. The long-term (~80-year) radial growth of white spruce was constrained mostly by competition, as measured by total basal area, with minor effects from drought. There was no relation of competition and drought on tree growth but dominant trees increased their growth more strongly to increases in modelled photosynthetic productivity, indicating asymmetric competition. Our results indicate a co-limitation of drought and climatic factors inhibiting photosynthetic productivity for radial growth of white spruce in western Canada. These results illustrate how a modelling approach can separate the complex factors regulating both multi-decadal average radial growth and interannual radial growth variations of white spruce, and contribute to advance our understanding on sustainable management of mixedwood boreal forests in western Canada.Peer reviewe
    corecore