8 research outputs found

    Arterial Hemodynamics in Aging Populations. From genes to clincial practice

    Get PDF
    __Abstract__ Cardiovascular disease is the number one leading cause of death globally and estimations showed that the number of people, who will die of cardiovascular disease, will increase in the coming years. Large part of cardiovascular diseases can be prevented by reducing the absolute risk by addressing multiple cardiovascular risk factors such as smoking, unhealthy diet, obesity, diabetes mellitus, raised lipids and hypertension. In this thesis, we will focus on the age related changes of the vascular tree in relation to cardiovascular disease. First, we will discuss a number of general principles of the hemodynamic system and the influence of advancing age. Second, we will explain general principals of genetic analyses. Third, we will describe the clinical consequences from the age related vascular changes and genetic analyses. Lastly, we describe the scope of this thesis

    Orthostatic hypotension and novel blood pressure-associated gene variants: Genetics of Postural Hemodynamics (GPH) Consortium

    Get PDF
    Aims Orthostatic hypotension (OH), an independent predictor of mortality and cardiovascular events, strongly correlates with hypertension. Recent genome-wide studies have identified new loci influencing blood pressure (BP) in populations, but their impact on OH remains unknown. Methods and resultsA total of 38 970 men and women of European ancestry from five population-based cohorts were included, of whom 2656 (6.8) met the diagnostic criteria for OH (systolic/diastolic BP drop <20/10 mmHg within 3 min of standing). Thirty-one recently discovered BP-associated single nucleotide polymorphisms (SNPs) were examined using an additive genetic model and the major allele as referent. Relations between OH, orthostatic systolic BP response, and genetic variants were assessed by inverse variance-weighted meta-analysis. We found Bonferroni adjusted (P < 0.0016) significant evidence for association between OH and the EBF1 locus (rs11953630, per-minor-allele odds ratio, 95 confidence interval: 0.90, 0.850.96; P=0.001), and nominal evidence (P < 0.05) for CYP17A1 (rs11191548: 0.85, 0.750.95; P=0.005), and NPR3-C5orf23 (rs1173771: 0.92, 0.870.98; P=0.009) loci. Among subjects not taking BP-lowering drugs, three SNPs within the NPPA/NPPB locus were nominally associated with increased risk of OH (rs17367504: 1.13, 1.021.24; P=0.02, rs198358: 1.10, 1.011.20; P=0.04, and rs5068: 1.22, 1.041.43; P=0.01). Moreover, an ADM variant was nominally associated with continuous orthostatic systolic BP response in the adjusted model (P=0.04). ConclusionThe overall association between common gene variants in BP loci and OH was generally weak and the direction of effect inconsistent with resting BP findings. These results suggest that OH and resting BP share few genetic components

    Genome-wide profiling of blood pressure in adults and children

    No full text
    Hypertension is an important determinant of cardiovascular morbidity and mortality and has a substantial heritability, which is likely of polygenic origin. The aim of this study was to assess to what extent multiple common genetic variants contribute to blood pressure regulation in both adults and children and to assess overlap in variants between differe

    Nucleotide excision DNA repair is associated with age-related vascular dysfunction

    No full text
    Background: Vascular dysfunction in atherosclerosis and diabetes mellitus, as observed in the aging population of developed societies, is associated with vascular DNA damage and cell senescence. We hypothesized that cumulative DNA damage during aging contributes to vascular dysfunction. Methods and Results: In mice with genomic instability resulting from the defective nucleotide excision repair genes ERCC1 and XPD (Ercc1 and Xpd mice), we explored age-dependent vascular function compared with that in wild-type mice. Ercc1 mice showed increased vascular cell senescence, accelerated development of vasodilator dysfunction, increased vascular stiffness, and elevated blood pressure at a very young age. The vasodilator dysfunction was due to decreased endothelial nitric oxide synthase levels and impaired smooth muscle cell function, which involved phosphodiesterase activity. Similar to Ercc1 mice, age-related endothelium-dependent vasodilator dysfunction in Xpd animals was increased. To investigate the implications for human vascular disease, we explored associations between single-nucleotide polymorphisms of selected nucleotide excision repair genes and arterial stiffness within the AortaGen Consortium and found a significant association of a single-nucleotide polymorphism (rs2029298) in the putative promoter region of DDB2 gene with carotid-femoral pulse wave velocity. ConclusionS: Mice with genomic instability recapitulate age-dependent vascular dysfunction as observed in animal models and in humans but with an accelerated progression compared with wild-type mice. In addition, we found associations between variations in human DNA repair genes and markers for vascular stiffness, which is associated with aging. Our study supports the concept that genomic instability contributes importantly to the development of cardiovascular disease

    Effects of long-term averaging of quantitative blood pressure traits on the detection of genetic associations

    No full text
    Blood pressure (BP) is a heritable, quantitative trait with intraindividual variability and susceptibility to measurement error. Genetic studies of BP generally use single-visit measurements and thus cannot remove variability occurring over months or years. We leveraged the idea that averaging BP measured across time would improve phenotypic accuracy and thereby increase statistical power to detect genetic associations. We studied systolic BP (SBP), diastolic BP (DBP), mean arterial pressure (MAP), and pulse pressure (PP) averaged over multiple years in 46,629 individuals of European ancestry. We identified 39 trait-variant associations across 19 independent loci (p < 5 Ă— 10 -8); five associations (in four loci) uniquely identified by our LTA analyses included those of SBP and MAP at 2p23 (rs1275988, near KCNK3), DBP at 2q11.2 (rs7599598, in FER1L5), and PP at 6p21 (rs10948071, near CRIP3) and 7p13 (rs2949837, near IGFBP3). Replication analyses conducted in cohorts with single-visit BP data showed positive replication of associations and a nominal association (p < 0.05). We estimated a 20% gain in statistical power with long-term average (LTA) as compared to single-visit BP association studies. Using LTA analysis, we identified genetic loci influencing BP. LTA might be one way of increasing the power of genetic associations for continuous traits in extant samples for other phenotypes that are measured serially over time

    Gene-age interactions in blood pressure regulation: A large-scale investigation with the CHARGE, global BPgen, and ICBP consortia

    No full text
    Although age-dependent effects on blood pressure (BP) have been reported, they have not been systematically investigated in large-scale genome-wide association studies (GWASs). We leveraged the infrastructure of three well-established consortia (CHARGE, GBPgen, and ICBP) and a nonstandard approach (age stratification and metaregression) to conduct a genome-wide search of common variants with age-dependent effects on systolic (SBP), diastolic (DBP), mean arterial (MAP), and pulse (PP) pressure. In a two-staged design using 99,241 individuals of European ancestry, we identified 20 genome-wide significant (p≤ 5 10) loci by using joint tests of the SNP main effect and SNP-age interaction. Nine of the significant loci demonstrated nominal evidence of age-dependent effects on BP by tests of the interactions alone. Index SNPs in the EHBP1L1 (DBP and MAP), CASZ1 (SBP and MAP), and GOSR2 (PP) loci exhibited the largest age interactions, with opposite directions of effect in the young versus the old. The changes in the genetic effects over time were small but nonnegligible (up to 1.58 mm H

    Erratum to: Genetic analysis of over 1 million people identifies 535 new loci associated with blood pressure traits

    No full text
    In the version of this article originally published, the name of author Martin H. de Borst was coded incorrectly in the XML. The error has now been corrected in the HTML version of the paper
    corecore