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Chapter 1.

Cardiovascular disease is the number one leading cause of death globally and estimations showed 

that the number of people, who will die of cardiovascular disease, will increase in the coming 

years.1,2 Large part of cardiovascular diseases can be prevented by reducing the absolute risk by 

addressing multiple cardiovascular risk factors such as smoking, unhealthy diet, obesity, diabetes 

mellitus, raised lipids and hypertension.3

In this thesis, we will focus on the age related changes of the vascular tree in relation to 

cardiovascular disease. First, we will discuss a number of general principles of the hemodynamic 

system and the influence of advancing age. Second, we will explain general principals of genetic 

analyses.  Third, we will describe the clinical consequences from the age related vascular changes 

and genetic analyses. Lastly, we describe the scope of this thesis.

Blood pressure 

Blood pressure is the pressure exerted by circulating blood upon the walls of blood vessels. It is 

one of the vital signs and a certain value of arterial pressure is needed for the perfusion of organs. 

During each heartbeat, blood pressure varies between a maximum (systolic) and a minimum 

(diastolic) pressure. 

Blood pressure is determined by:

1)	 Cardiac output, determined by frequency and stroke volume of the heart

2)	 Arterial resistance, which depend on the diameter of the artery

3)	 Central venous pressure

4)	 Circulating volume

Blood pressure varies widely. This variation is regulated by two feedback systems:

1)	� The central nervous system allows very precise, short-term blood pressure regulation 

through sympathetic and parasympathetic divisions of the autonomic nervous system. There 

is an intricate and interactive set of feedback from baro-, chemo- and osmoreceptors to 

continuously monitor blood flow and pressure. The autonomic nervous system adjusts the 

mean arterial pressure by altering, frequency and stroke volume of the hearts contraction as 

well as the total peripheral resistance.

2)	� The long-term adjustment of arterial pressure is performed by the renin-angiotensin system 

(RAS). This system allows the kidney to compensate for loss in blood volume or drops in 

arterial pressure by activating an endogenous vasoconstrictor, angiotensin II.4

The fluctuation of the arterial pressure results from the pulsatile nature of the cardiac output. The 

difference of the measured systolic and diastolic pressure is called pulse pressure and the average 

pressure over a cardiac cycle is the mean arterial pressure.
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Hypertension

Elevated blood pressure, called hypertension, is a common and strong cardiovascular risk factor 

and responsible for many cardiovascular events.5 Hypertension is defined as systolic blood 

pressure (SBP)≥ 140 and/or diastolic blood pressure (DBP)≥ 90mmHg.6 The pathophysiology of 

hypertension is not yet fully explained however research indicates multi-etiological origin, including 

genetic susceptibility and lifestyle factors. 

With advancing age the prevalence of hypertension increases and the nature of hypertension 

changes. In the middle-aged population, hypertension is predominantly a diastolic or combined 

systolic and diastolic hypertension. Isolated systolic hypertension (ISH) is the most frequent 

type of hypertension in the elderly7, due to the continuous increase in systolic blood pressure 

with advancing age whereas diastolic blood pressure tends to remain constant or declines with 

advancing age.8 The most likely explanation for the rise in systolic blood pressure and fall in 

diastolic blood pressure is large artery stiffening.8-10
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Arterial stiffness

The cardiovascular system can be described as a closed conduit with a central pump with the 

principal function of supplying blood to all parts of the body. The cushion function of the arteries, 

transforming pulsatile flow at the ascending aorta into steady flow through the arterioles, provides 

that mean pressure is maintained throughout the whole arterial tree and pulsation around the 

mean in the ascending aorta is minimized. This cushioning function of the function of the arteries 

is dependent on the viscoelastic properties of the arterial walls.11,12

Disturbance of the optimal function of heart and arterial tree are seen with hypertension and aging. 

Wave reflection is apparent as a secondary boost to pressure at some part of the cycle. With 

aging, there is an increase in pulse wave velocity and therefore earlier return of the reflected wave 

in late systole instead of in diastole. This will boost the systolic blood pressure while reducing 

pressure during diastole and increasing aortic pulse pressure.13,14 (Figure 1)

  

Figure 1a. Pressure wave in elastic arteries, first wave is the forward wave and second wave the reflected wave, 

blue line represents the arterial pressure during cardiac cycle.

Figure 1b. Pressure wave in stiffer artery, reflecting a boost in pressure during systole and decrease in pressure 

during diastole. 
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Arterial stiffness measurements 

The elastic properties of conduit arteries vary along the arterial tree: the proximal arteries are more 

elastic, and the distal arteries stiffer. This heterogeneity is caused by the molecular, cellular and 

histological structure of the arterial wall, which differs between the various parts of the arterial 

tree.15-18 There are several ways to measure arterial stiffness. Systemic arterial stiffness can only 

be estimated from models of the circulation19, whereas regional and local arterial stiffness  can be 

measured directly and non-invasively at various site along the arterial tree.20,21 The aorta is a major 

vessel of interest when determining regional arterial stiffness, because of the large contribution of the 

thoracic and abdominal aorta in buffering pressure wave.18,22 Measurement of local stiffness at the 

carotid artery may also provide important information, due to the atheroma formation at this site.23

Two of the most frequently used methods to assess arterial stiffness are the measurement of pulse 

wave velocity over a certain part of the arterial tree (regional arterial stiffness) and the measurement 

of changes in arterial diameter due to changes in arterial pressure over the cardiac cycle at one 

specific point in the arterial tree (measurement of local stiffness). 

1)	 Carotid femoral pulse wave velocity

	� This regional measurement of aortic stiffness is generally accepted as the most simple, non-

invasive, robust and reproducible method to determine arterial stiffness.23

	� Within our framework, the carotid femoral pulse wave velocity was assessed with an 

automatic device (Complior® Artech Medical, Pantin – France)24 that measures the time delay 

between the rapid early upstroke of the pulse pressure waves recorded simultaneously in the 

carotid artery and the femoral artery. The distance between the recording sites in the carotid 

and the femoral artery was measured with a tape over the surface of the body. The pulse 

wave velocity was calculated as the ratio between distance and the foot-foot time delay and 

was expressed in meter per second. (Figure  2)

	 Figure 2: schematic representation of measurement of carotid-femoral pulse wave velocity
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2)	� Distensibility of the common carotid artery

	� Local arterial stiffness of the carotid artery can be determined by using ultrasound devices. 

	� The vessel wall motion of the right common carotid artery was measured by means of a 

duplex scanner (ATL Ultramark IV, operating frequency 7.5 MHz) connected to a vessel wall 

movement detector system. A region at 1.5 cm proximal to the origin of the bulb of the 

carotid artery was identified with the use of B-mode ultrasound, where after the system was 

switched to M-mode. The displacement of the arterial walls was obtained by processing 

the radiofrequency signals originating from two selected sample volumes positioned over 

the anterior and posterior walls. The end-diastolic diameter (D), the absolute stroke change 

in diameter during systole (∆D), and the relative stroke change in diameter (∆D/D) were 

computed as the mean of 4 cardiac cycles of 3 successive recordings. The cross-sectional 

arterial wall distensibility coefficient, expressed in MPa-1, was calculated according to the 

following equation: distensibility coefficient=2∆D/(D×pulse pressure).25-27(Figure 3)

Figure 3 Example of common carotid arterial distensibility measurement

The two upper lines show the movement of the anterior and posterior arterial wall during the cardiac cycle. The 

bottom line shows the change in lumen diameter resulting from the movement of the arterial walls. The program 

automatically calculated several parameters for every heartbeat among which the absolute change in lumen 

diameter (dist), the end diastolic lumen diameter (diam) and the change in lumen diameter relative to its end-

diastolic diameter, which indicates the distension of the artery (dist in %).
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Clinical consequences 

The increase in arterial stiffness has deleterious effects on the left ventricular cardiac function. 

An increase in pressure wave amplitude and early wave reflections, seen with arterial stiffening, 

increased peak- and end-systolic blood pressure in the ascending aorta, contributing to an 

increased myocardial oxygen consumption.28 Increased systolic blood pressure induces myocardial 

hypertrophy29, impairs diastolic myocardial function and ventricular ejection.30 In addition, 

increased systolic blood pressure and pulse pressure accelerates arterial damage, increasing the 

fatigue of biomaterials, causing degenerative changes and further arterial stiffening.31 Finally, the 

stiffness-induced reduction of diastolic blood pressure alters the driving pressure of the coronary 

circulation, favoring myocardial ischemia.32 These alterations taken together explain why aortic 

stiffness is an independent risk factor of cardiovascular disease risk.  

A number of studies have demonstrated that increased arterial stiffness is associated with elevated 

risk of cardiovascular disease in high-risk samples, including patients with hypertension33, with 

end-stage renal disease34, with diabetes mellitus34 as well in community-based samples.35-38

However, several questions remain unanswered. Large population studies have focused on cardio-

vascular risk and in particular on myocardial infarction. No study focused on heart failure as outcome, 

which is a prevalent cardiovascular disorder and represents a major problem in aging populations. 

Moreover, new developed methods of clinical utility have not been studied with arterial stiffness. 

Genetic background 

The underlying mechanism of hypertension and arterial stiffening is multi-factorial and complex. 

Exploring genetic loci associated with hypertension and arterial stiffening, provides new insights 

in biological process and may suggest novel strategies for prevention and treatment of increased 

arterial stiffness and hypertension.

Genetic studies traditionally used candidate gene or family-based linkage studies to search for 

novel genes. Despite the substantial heritability and considerable knowledge about pathways that 

are critical to blood pressure homeostasis, studies of candidate genes produced few reproducible 

results.39 And although arterial stiffness has shown to be, at least in part, heritable, the molecular 

mechanisms underlying aortic stiffness remained largely undefined.40 

The variation of blood pressure and arterial stiffness is probably due to multiple variants with 

small effects that are hard to detect with the traditional genetic methods. With the introduction of 

Genome-Wide Association (GWA) studies, there has been considerable progress in identification 

of common genetic variants underlying common complex disorders.39 Application of this approach 

to arterial hemodynamic measures reveal novel genes and contribute to the understanding of the 

complex nature underlying hypertension and arterial stiffening.
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Scope and outline of this thesis

This thesis is divided in two parts. In the first part, we aimed to search for new genetic risk factors 

for age related changes in the vascular system including blood pressure and arterial stiffness. In 

the second part of this thesis, the cardiovascular consequences of arterial stiffness will be studied.  

The studies presented in this thesis used data from the Rotterdam Study, from the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) consortium, from the International 

Consortium of Blood Pressure GWAs (ICBP-GWAs) and from AortaGen consortium.

The Rotterdam study is a large prospective population-based cohort study among initially 7,983 

inhabitants of Ommoord, a suburb of Rotterdam, who were 55 years or older. Since the start of 

the study in 1989, participants have visited the research center up to 5 times. In 2000, the first 

extended cohort was enrolled, which included 3,011 inhabitants aged 55 years and older at that 

time, who visited the research center up to 3 times. In 2006, a second extended cohort was 

enrolled, which included 3,932 inhabitants aged 45 years or older, who are visiting the research 

center for the second time.41 Figure 4 shows the structure of the Rotterdam Study. 

 

Figure 4. Diagram of the examination cycles of the Rotterdam Study (RS).
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The CHARGE consortium comprises of 5 large international population-based cohort studies, 

which originally included the Atherosclerosis Risk in Elderly study (ARIC), Age, Gene/Environment 

Susceptibility-Reykjavik study(AGES), Cardiovascular Health Study (CHS), Framingham Heart 

Study (FHS) and the Rotterdam Study (RS), and was designed to investigate genetic risk factors 

for cardiovascular diseases.42

The ICBP-GWA’s is a multi-staged consortium with a combining sample > 200.000 subjects which 

aims to further the understanding of the genetic architecture underlying blood pressure.

The AortaGen consortium includes 9 cohort studies that completed genome-wide genotyping and 

had measured carotid femoral pulse wave velocity and two additional cohort studies for replication.

Part 1 of this thesis is focused on the genetic risk factors for age related changes of the vascular 

system. Chapter 2 presents new discovered genes involved in blood pressure regulation and 

hypertension. In chapter 2.1 we describe the principal findings of common genetic variation 

with blood pressure in CHARGE and in chapter 2.2 we describe the extension of this work in a 

larger cohort, including the cardiovascular disease risk of these genetic variants. In chapter 2.3 

we described the relation between a candidate gene HSD3B1 and blood pressure. Chapter 3 

presents recently discovered genes involved in arterial stiffness. In chapter 3.1 we describe new 

genes related to pulse pressure (PP) and mean arterial pressure (MAP) and in chapter 3.2  we 

describe new genes related to pulse wave velocity.

Part 2 of this thesis is focused on the cardiovascular consequences of age related changes of the 

vascular system. Chapter 4 is focused on the relation between arterial stiffness and hypertension.  

In chapter 4.1 we describe the relation between hypertension and arterial stiffness.  In chapter 4.2 

we describe the cardiovascular consequences of orthostatic hypotension. In chapter 5 is focused 

on the clinical consequences of arterial stiffness. In chapter 5.1 we describe the elevated risk of 

heart failure in relation to arterial stiffness. In chapter 5.2 we describe the additive value of arterial 

stiffness in predicting cardiovascular disease.

In Chapter 6, we discuss the main findings of this thesis and we provide suggestions for future 

research. 
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Genome-wide association of blood pressure: 

CHARGE consortium

Based on 

Genome-wide association study of blood pressure and hypertension. 

Nat Gen 2009 May; 41:677-687.
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GWA study of blood pressure: CHARGE consortium

Abstract

Background

Blood pressure is a major cardiovascular disease risk factor. To date, few variants associated with 

inter-individual blood pressure variation have been identified and replicated.

Methods

We conducted a meta-analysis of genome-wide association study of systolic (SBP) and diastolic 

(DBP) blood pressure and hypertension from six cohort studies in the setting of the Cohorts for 

Heart and Aging Research in Genomic Epidemiology (CHARGE) Consortium (n = 29,136). We 

sought additional evidence to support our findings with the Global BPgen Consortium (n = 34,433)

Results

We identified 13 single nucleotide polymorphisms (SNPs) for SBP, 20 SNPs for DBP and 10 SNPs 

for hypertension at P <4x10-7 threshold. The top ten loci for SBP and DBP were incorporated into 

a risk score; mean blood pressure and prevalence of hypertension increased in relation to the 

number of risk alleles carried. When ten CHARGE SNPs for each trait were included in a joint meta-

analysis with the Global BPgen Consortium, four CHARGE loci attained genome-wide significance 

(P < 5 x 10-8) for SBP (ATP2B1, CYP17A1, PLEKHA7, SH2B3), six for DBP (ATP2B1, CACNB2, 

CSK-ULK3, SH2B3, TBX3-TBX5, ULK4) and one for hypertension (ATP2B1). 

Conclusions

Identifying genes associated with blood pressure advances our understanding of blood pressure 

regulation and highlights potential drug targets for the prevention or treatment of hypertension.
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Chapter 2.1

Introduction

High blood pressure affects about one-third of adults and contributes to 13.5 million deaths 

worldwide each year and about half the global risk for stroke and ischemic heart disease.1,2 Clinical 

trials, dating back more than 40 years, have proven that drug treatment to lower blood pressure 

markedly reduces the risk of cardiovascular events in people with hypertension.3,4 

The substantial (30–60%)5 heritability of blood pressure has prompted extensive efforts to identify 

its genetic underpinnings. Several complementary approaches have been used to search for 

genes associated with inter-individual variation in blood pressure in the general population, but 

these have yielded relatively few clues. Despite considerable knowledge about pathways that 

are critical to blood pressure homeostasis, linkage and candidate gene studies have provided 

limited consistent evidence of blood pressure quantitative trait loci.6-8 The study of families with 

rare mendelian high or low blood pressure syndromes has identified mutations with gain or loss 

of function in about a dozen renal sodium regulatory genes9, and common variants in two renal 

sodium regulatory genes have been found to be associated with blood pressure in the general 

population.10 The vast majority of the genetic contribution to variation in blood pressure, however, 

remains unexplained.

Large-scale genome-wide association studies (GWAS), in which hundreds of thousands of 

common genetic variants are genotyped and analyzed for disease association, have shown great 

success in identifying genes associated with common diseases and traits.11,12 Six GWAS published 

to date, however, have not identified loci associated with blood pressure or hypertension at P < 5 

x 10-8, raising concerns about the utility of this approach for these traits.13-18

If blood pressure variation in the general population is due to multiple variants with small effects, 

very large study samples are needed to identify them. We established the Cohorts for Heart and 

Aging Research in Genome Epidemiology (CHARGE)19 Consortium to identify common genetic 

variation associated with complex traits. The CHARGE Consortium consists of 29,136 participants 

of European descent who had undergone standardized blood pressure measurements in six 

population-based cohort studies: the Age, Gene/Environment Susceptibility Reykjavik Study 

(AGES), Atherosclerosis Risk in Communities (ARIC) Study, Cardiovascular Health Study (CHS), 

Framingham Heart Study (FHS), Rotterdam Study (RS) and the Rotterdam Extension Study (RES).

We report the top findings of our GWAS of systolic blood pressure, diastolic blood pressure 

and hypertension, provide replication results for our most promising loci in the Global BPgen 

Consortium20, another GWAS consortium of similar size, and report combined meta-analysis 

findings of the two consortia for the most promising loci found in CHARGE.
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Methods

Consortium organization 

The CHARGE Consortium19 includes six cohort studies that completed genome-wide genotyping 

and had extensive data on multiple phenotypes including blood pressure. Each study adopted 

collaboration guidelines and established a consensus on phenotype harmonization, covariate 

selection and an analytical plan for within-study genome-wide association and prospective 

meta-analysis of results across studies. Each study received institutional review board approval 

of its consent procedures, examination and surveillance components, data security measures, 

and DNA collection and its use for genetic research. All participants in each study gave written 

informed consent for participation in the study and the conduct of genetic research. 

Genotype imputation 

For imputation of genotypes to the HapMap set of approximately 2.5 million SNPs, ARIC, FHS and 

RS used a hidden Markov model as implemented in MACH, and CHS used BIMBAM10 v0.99.21 

SNP imputation combined genotype data from each sample with the HapMap CEU samples 

and then inferred genotypes probabilistically according to shared haplotype stretches between 

study samples and HapMap release 22 build 36. Imputation results are summarized as an ‘allele 

dosage’ defined as the expected number of copies of the minor allele at that SNP (a fractional 

value between 0.0 and 2.0) for each genotype. 

Statistical analyses 

Cross-sectional analyses were conducted within each cohort using an additive genetic model, 

and within-study associations were combined by prospective meta-analysis. The phenotypes for 

meta-analysis were systolic and diastolic blood pressure and hypertension at the first examination 

attended. For participants who were taking antihypertensive medication we added 10 mmHg to 

observed SBP values and 5mm Hg to DBP values.22 Hypertension was defined as SBP ≥ 140 or 

DBP ≥ 90 mmHg or drug treatment for hypertension at time of assessment. Within each cohort, 

regression models were fitted for systolic and diastolic blood pressure (separately) and allele 

dosage, adjusting for sex, age, age squared and BMI.

Meta-analysis of results was carried out using inverse-variance weighting. Before meta-analysis, 

results were filtered for minor allele frequency <0.005 and the genomic control parameter 

was calculated to adjust each study. After meta-analysis, the genomic control parameter was 

recalculated to adjust for between-study heterogeneity.23 A predetermined threshold of 4 x 10-7 

(stage 1) was used to indicate genome-wide significance within CHARGE. For 2.5 x 106 tests (the 

total number of imputed SNPs), this threshold means that the expected number of false-positive 

results is ≤1; the validity of this bound is not affected by correlation between test statistics.
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Ten leading SNPs for SBP, ten for DBP and ten for hypertension were exchanged between 

CHARGE and Global BPgen, a consortium with a sample size of 34,433 individuals of European 

ancestry with analogous genome-wide data38. SNP selection was limited to one SNP per locus 

of interest, defined by an r2 ≤ 0.2. For rs880315, imputation in Global BPgen was suboptimal 

and this SNP was replaced with rs12046272. rs8096897 and rs10972206 were not selected for 

exchange owing to low minor allele frequencies (defined as < 0.01 for continuous traits, < 0.05 

for hypertension). rs5761405 was selected for exchange, but was not available in the imputed 

results from Global BPgen, so the next most highly significant locus was selected in its place. For 

all 30 exchanged SNPs we carried out meta-analysis of CHARGE and Global BPgen results using 

inverse-variance weighting and considered a P value in the joint analysis (stage 2) significant at P = 

5 x 10-8. Significant replication of a genome-wide significant SNP in CHARGE was defined as a P 

value < 0.008 for the same SNP in Global BPgen (0.05/6 genome-wide significant SNPs submitted 

for replication). One-sided tests were used to assess replication when the alignment of an allele 

and its directional effect were identical between CHARGE and Global BPgen.

Analysis of hypertension was conducted within each cohort, and the within-study associations 

were combined by meta-analysis. Within each cohort, regression models were fitted for 

hypertension, adjusting for sex, age, age squared and BMI. Meta-analysis of results was carried 

out using inverse-variance weighting. Before meta-analysis, results were filtered for low minor 

allele frequency < 0.01 and the genomic control parameter calculated to adjust each study. After 

meta-analysis, the genomic control parameter was calculated again to adjust for between-study 

heterogeneity. In the meta-analysis of CHARGE and Global BPgen, the analytical approach used 

in Global BPgen was different from that of CHARGE; in Global BPgen non-hypertensive controls 

were defined as individuals not taking any hypertensive medications and having a SBP ≤ 120 

mmHg and a DBP ≤ 85 mmHg.

Blood pressure risk score was a weighted sum across ten top SNPs (separately for systolic and 

diastolic blood pressure) combining beta coefficients and doses of risk alleles, rounded to 1 

mmHg for SBP (groups ≤6 to ≥ 15) and 0.5 mmHg for diastolic blood pressure (groups ≤2.5 to ≥ 

7.5). Within a study, for each risk score group we calculated deviations of empirical blood pressure 

from the study mean. Across studies, we estimated mean deviation and standard error within risk 

score group, weighted by group and study-specific sample sizes. For hypertension, odds ratios 

(and standard errors) were the corresponding summary statistics, with the reference group being 

those with a weighted systolic risk score of 10 or a diastolic score of 5.
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SNP associations with altered gene expression 

To assess putative functional associations in our GWAS, we used bioinformatics tools to query 

existing GWAS databases of SNPs associated with cis-gene expression levels in immortalized liver 

(n=3,322)25 and lymphoblastoid cell lines (n=10,823).26 These expression-associated SNPs were 

then explored for association with blood pressure in the fully imputed HapMap blood pressure 

results for CHARGE. Statistical significance was defined by a P value of 1/n (where n is the number 

of tissue-specific cis eSNPs interrogated); this threshold will yield on average one false positive 

per tissue examined. The P-value thresholds for significance of eSNP associations for liver and 

lymphoblastoid cell lines were 3.0 x 10-4  and 9.2 x 10-5, respectively.

Results

Study samples

The total sample size for this analysis was 29,136 (AGES, n = 3,219; ARIC, n = 8,047; CHS, n = 

3,277; FHS, n = 8,096; RS n = 4,737; RES, n = 1760). The mean age of the study participants at 

the initial examination varied from 38 years (FHS) to 72 years (CHS). The mean observed (and 

treatment corrected) SBP across the six cohorts ranged from 118 (120) mmHg (ARIC) to 143 (145) 

mmHg (RES); the mean DBP ranged from 72 (73) mmHg (ARIC) to 83(84) mmHg (AGES). The 

proportion of participants taking antihypertensive medication ranged from 5% (FHS) to 38% (CHS), 

and the proportion with hypertension ranged from 17% (FHS) to 60% (RES).

Meta-analysis of CHARGE cohort results

Within-cohort analyses were combined by meta-analysis and the results for all SNPs with P value 

< 1 x 10-6 are presented in Table 1 for SBP, Table 2 for DBP and Table 3 for hypertension; 

within each of these tables the results for the other two blood pressure phenotypes are also 

provided. The number of SNPs with P values <1 x 10-3 was 3,433 for systolic and 3,558 for 

diastolic blood pressure versus 2,540 expected. The proportion of SNPs with P < 1 x 10-3 that 

are intragenic was 47% for systolic and diastolic blood pressure versus an average of 37% for all 

imputed SNPs. For systolic blood pressure the meta-analysis identified 13 SNPs with P < 4 x 10-7 

(stage 1 threshold). The strongest signal for systolic pressure was for rs2681492 (P = 3.0 x 10-11) in 

ATP2B1 on chromosome 12q21–23. A low minor allele frequency variant in C18orf1 (rs8096897; P 

= 3.2 x 10-8) showed evidence of association with SBP as did CASZ1 (rs880315; P = 2.1 x 10-7). A 

signal was identified on chromosome 12q24 for SH2B3 (rs3184504; P = 5.7 x 10-7) and for nearby 

ATXN2 (rs653178; P = 8.5 x 10-7). PLEKHA7 (chromosome 11p15.1, rs381815, P = 5.8 x 10-7) and 

a locus on chromosome 2q31–33adjacent to PMS1 and MSTN (rs7571613, P = 7.2 x 10-7) showed 

suggestive evidence of association. Of note, many of the top SBP-associated SNPs were also 

associated with other blood pressure phenotypes (Table 1). 
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For DBP (Table 2) there were 20 SNPs with P < 4 x 10-7. Significant association signals were 

detected in a large 1-Mb block of linkage disequilibrium on chromosome 12q24 that includes 

SH2B3 (rs3184504, P = 1.7 x 10-8), ATXN2 (rs653178, P = 2.0 x 10-8; r2 =1.0 with rs3184504), and 

TRAFD1 (rs17630235, P = 1.0 x 10-7; r2 =0.66 with rs3184504). In addition, ATP2B1 (chromosome 

12q21, rs2681472, P = 3.7 x 10-8), TBX3-TBX5 (chromosome 12q24, rs2384550, P = 1.3 x 10-7) 

and PLEKHA7 (chromosome 11p15, rs11024074, P = 2.8 x 10-7) showed association with DBP. 

Suggestive evidence of association was found for loci in or adjacent to ULK4 (chromosome 3p22.1), 

CSK-ULK3 (chromosome 15q24) and CACNB2 (chromosome 10p12). Multiple DBP-associated 

SNPs were also associated with other blood pressure phenotypes (Table 2). 

For the dichotomous trait of hypertension (Table 3), one significant association was detected for 

ATP2B1 (rs2681472, P = 1.7 x 10-8), with an odds ratio for hypertension of 1.17 per risk allele. 

Suggestive evidence of association was detected for ITGA9 (chromosome 3p22.2, rs7640747, P = 

4.8 x 10-7) and CACNB2 (rs11014166, P = 7.8 x 10-7). 

Independent replication and meta-analysis of top CHARGE SNPs

Thirty SNPs representing the top ten CHARGE Consortium loci for SBP, DBP and hypertension 

were exchanged for lookup within the Global BPgen Consortium GWAS results. One SNP for 

SBP, four for DBP and one for hypertension that attained stage 1 P < 4 x 10-7 in CHARGE were 

assessed for evidence of independent replication in Global BPgen (Table 4). Five of these six 

associations fulfilled criteria for external replication in Global BPgen of P < 0.008 (0.05/6, one-

tailed test). The replicated loci included ATP2B1 (for SBP, DBP and hypertension), SH2B3 (DBP) 

and TBX3-TBX5 (DBP). PLEKHA7 did not replicate for DBP (rs11024074, P = 0.03 in Global BPgen); 

however, another SNP in PLEKHA7 was genome-wide significant (at P < 5 x 10-8, stage 2) for 

SBP (rs381815) in the joint meta-analysis of CHARGE and Global BPgen. Of note, for 29 of 30 

CHARGE SNPs that were exchanged, the directional association (sign of beta) was identical in 

both consortia.

Table 4 provides results of joint meta-analysis of CHARGE and Global BPgen for the top ten 

CHARGE SNPs for SBP, DBP and hypertension. Four genome-wide significant (stage 2 P < 5 

x 10-8) associations emerged for SBP (CYP17A1, PLEKHA7, ATP2B1 and SH2B3), six for DBP 

(ULK4, CACNB2, ATP2B1, SH2B3, TBX3-TBX5 and a locus adjacent to CSK-ULK3) and one 

for hypertension (ATP2B1). Three additional associations attained P < 4 x 10-7 (MDS1 for SBP; 

CACNB2 and a region near EDN3 for hypertension). Plots of association results across each of the 

genome-wide significant loci can be found online.24 
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Blood pressure risk score 

Weighted risk scores, incorporating the top ten CHARGE loci for SBP and DBP, were applied to 

the study results to examine the influence of risk alleles in aggregate on deviation from mean blood 

pressure levels and odds ratios for hypertension. Figure 1 shows a continuous and graded relation 

of risk score on blood pressure levels and odds ratios for hypertension. Inverse-variance weighted 

regression estimates of slope (beta) and its standard error (s.e.) were obtained across risk score 

groups for deviation from mean blood pressure and odds ratios for hypertension. To summarize 

these findings, two-tailed P values (from Z = beta/s.e.(beta)) were obtained from testing the null 

hypothesis of a zero slope across risk score groups. The P values across risk score groups were 

as follows: 1.8 x 10-27 (SBP versus SBP risk score), 1.7 x 10-56 (DBP versus DBP risk score), 1.4 x 

10-17 (hypertension versus SBP risk score) and 8.4 x 10-10 (hypertension versus DBP risk score).

Putative functional variation

A search for nonsynonymous SNPs among our blood pressure association results identified five 

such variants, including rs3184504 in SH2B3 (stage 2 P value for DBP = 2.6 x 10-14), rs267561 

in ITGA9 (stage 1 P value for hypertension 2.6 x 10-6) and three linked nonsynonymous SNPs in 

ULK4 (rs2272007, rs3774372 and rs1716975; pairwise r2 = 0.82–1.0; lowest stage 1 P value = 1.5 

x 10-6 for DBP). To further identify putative functional associations within our GWAS results, we 

culled from the 2.5 million HapMap SNPs in our analysis those that were previously reported from 

GWAS to be associated with altered gene expression in liver25 (n = 3,322) or lymphoblastoid cell 

lines26 (n = 10,823). These expression-associated SNPs (eSNPs or eQTLs) were then interrogated 

for association with blood pressure phenotypes within our GWAS results (Table 5). Of note, three of 

our genome-wide significant loci were captured through the analysis eSNPs, including rs739496 

in SH2B3, which is associated with altered expression of nearby HSS00340376 in liver; rs6495126 

near CSK-ULK3, which is associated with altered expression of ULK3 in liver; and nonsynonymous 

SNPs rs1716975 and rs2272007 in ULK4, which are associated with altered expression of ULK4 in 

lymphoblastoid cell lines. In addition, rs7571613 near PMS1 and MSTN is associated with altered 

expression of ORMDL1 and PMS1 in lymphoblastoid cell lines. Additional eSNPs with suggestive 

evidence of association with blood pressure phenotypes were rs7537765 near MTHFR-NPPA 

(expressed gene CLCN6), and several SNPs in KDM5A that are associated with expression of 

KDM5A, SLC6A12 and CCDC77.
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Table 1: Genome-wide association results for SBP-associated SNPs with p value <1x10-6 

sorted by SBP meta-analysis p value

SNP identifier Chr Position Gene MAF CHARGE 

Meta-analysis SBP

CHARGE 

Meta-analysis DBP

CHARGE 

Meta-analysis Hypertension

Beta SE P Beta SE p Beta SE p

rs2681492 12 88537220 ATP2B1 0.20 -1.26 0.19 3.0E-11 -0.62 0.11 4.6E-08 -0.14 0.03 8.4E-08

rs2681472 12 88533090 ATP2B1 0.18 -1.29 0.19 3.5E-11 -0.64 0.11 3.7E-08 -0.16 0.03 1.7E-08

rs11105354 12 88550654 ATP2B1 0.18 -1.30 0.20 3.7E-11 -0.63 0.11 5.8E-08 -0.16 0.03 1.8E-08

rs11105364 12 88593407 0.18 -1.30 0.20 4.8E-11 -0.63 0.12 1.2E-07 -0.16 0.03 2.1E-08

rs17249754 12 88584717 0.18 -1.30 0.20 5.2E-11 -0.63 0.12 1.0E-07 -0.16 0.03 2.2E-08

rs11105368 12 88598572 0.18 -1.30 0.20 5.3E-11 -0.63 0.12 1.3E-07 -0.16 0.03 2.2E-08

rs12579302 12 88574634 0.18 -1.29 0.20 6.2E-11 -0.62 0.12 1.3E-07 -0.16 0.03 2.2E-08

rs12230074 12 88614998 0.17 -1.31 0.20 9.1E-11 -0.62 0.12 3.4E-07 -0.17 0.03 2.9E-08

rs11105378 12 88614872 0.17 -1.31 0.20 9.1E-11 -0.62 0.12 3.1E-07 -0.17 0.03 2.8E-08

rs4842666 12 88465680 0.17 -1.20 0.21 6.5E-09 -0.62 0.12 4.5E-07 -0.15 0.03 3.4E-07

rs8096897 18 13428905 C18orf1 0.01 -12.87 2.33 3.2E-08 -4.07 1.33 2.9E-03 -0.73 0.35 0.04

rs11105328 12 88466521 0.18 -1.11 0.20 4.2E-08 -0.61 0.12 5.1E-07 -0.15 0.03 7.1E-07

rs880315 1 10719453 CASZ1 0.35 0.89 0.17 2.1E-07 0.30 0.10 2.9E-03 0.09 0.02 6.2E-05

rs3184504 12 110368991 SH2B3 0.48 0.75 0.15 5.7E-07 0.50 0.09 1.7E-08 0.07 0.02 7.4E-04

rs381815 11 16858844 PLEKHA7 0.26 0.84 0.17 5.8E-07 0.51 0.10 4.3E-07 0.09 0.02 1.7E-04

rs7926335 11 16874445 PLEKHA7 0.26 0.85 0.17 5.8E-07 0.51 0.10 4.8E-07 0.09 0.02 1.9E-04

rs7571613 2 190513907 PMS1 0.18 0.96 0.19 7.2E-07 0.55 0.11 2.2E-06 0.09 0.03 5.2E-04

rs11895934 2 190510498 0.18 0.96 0.19 7.3E-07 0.55 0.11 2.2E-06 0.09 0.03 5.5E-04

rs7564968 2 190520217 0.18 0.96 0.19 8.0E-07 0.55 0.11 2.3E-06 0.09 0.03 4.9E-04

rs653178 12 110492139 ATXN2 0.48 0.74 0.15 8.5E-07 0.50 0.09 2.0E-08 0.07 0.02 7.8E-04

rs284277 1 10713384 CASZ1 0.35 0.79 0.16 9.4E-07 0.24 0.09 0.01 0.09 0.02 6.9E-05

Chr=chromosome; MAF=minor allele frequency;

Beta is the effect size on blood pressure, in mmHg, per allele based on the additive genetic model
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Table 1: Genome-wide association results for SBP-associated SNPs with p value <1x10-6 

sorted by SBP meta-analysis p value

SNP identifier Chr Position Gene MAF CHARGE 

Meta-analysis SBP

CHARGE 

Meta-analysis DBP

CHARGE 

Meta-analysis Hypertension

Beta SE P Beta SE p Beta SE p

rs2681492 12 88537220 ATP2B1 0.20 -1.26 0.19 3.0E-11 -0.62 0.11 4.6E-08 -0.14 0.03 8.4E-08

rs2681472 12 88533090 ATP2B1 0.18 -1.29 0.19 3.5E-11 -0.64 0.11 3.7E-08 -0.16 0.03 1.7E-08

rs11105354 12 88550654 ATP2B1 0.18 -1.30 0.20 3.7E-11 -0.63 0.11 5.8E-08 -0.16 0.03 1.8E-08

rs11105364 12 88593407 0.18 -1.30 0.20 4.8E-11 -0.63 0.12 1.2E-07 -0.16 0.03 2.1E-08

rs17249754 12 88584717 0.18 -1.30 0.20 5.2E-11 -0.63 0.12 1.0E-07 -0.16 0.03 2.2E-08

rs11105368 12 88598572 0.18 -1.30 0.20 5.3E-11 -0.63 0.12 1.3E-07 -0.16 0.03 2.2E-08

rs12579302 12 88574634 0.18 -1.29 0.20 6.2E-11 -0.62 0.12 1.3E-07 -0.16 0.03 2.2E-08

rs12230074 12 88614998 0.17 -1.31 0.20 9.1E-11 -0.62 0.12 3.4E-07 -0.17 0.03 2.9E-08

rs11105378 12 88614872 0.17 -1.31 0.20 9.1E-11 -0.62 0.12 3.1E-07 -0.17 0.03 2.8E-08

rs4842666 12 88465680 0.17 -1.20 0.21 6.5E-09 -0.62 0.12 4.5E-07 -0.15 0.03 3.4E-07

rs8096897 18 13428905 C18orf1 0.01 -12.87 2.33 3.2E-08 -4.07 1.33 2.9E-03 -0.73 0.35 0.04

rs11105328 12 88466521 0.18 -1.11 0.20 4.2E-08 -0.61 0.12 5.1E-07 -0.15 0.03 7.1E-07

rs880315 1 10719453 CASZ1 0.35 0.89 0.17 2.1E-07 0.30 0.10 2.9E-03 0.09 0.02 6.2E-05

rs3184504 12 110368991 SH2B3 0.48 0.75 0.15 5.7E-07 0.50 0.09 1.7E-08 0.07 0.02 7.4E-04

rs381815 11 16858844 PLEKHA7 0.26 0.84 0.17 5.8E-07 0.51 0.10 4.3E-07 0.09 0.02 1.7E-04

rs7926335 11 16874445 PLEKHA7 0.26 0.85 0.17 5.8E-07 0.51 0.10 4.8E-07 0.09 0.02 1.9E-04

rs7571613 2 190513907 PMS1 0.18 0.96 0.19 7.2E-07 0.55 0.11 2.2E-06 0.09 0.03 5.2E-04

rs11895934 2 190510498 0.18 0.96 0.19 7.3E-07 0.55 0.11 2.2E-06 0.09 0.03 5.5E-04

rs7564968 2 190520217 0.18 0.96 0.19 8.0E-07 0.55 0.11 2.3E-06 0.09 0.03 4.9E-04

rs653178 12 110492139 ATXN2 0.48 0.74 0.15 8.5E-07 0.50 0.09 2.0E-08 0.07 0.02 7.8E-04

rs284277 1 10713384 CASZ1 0.35 0.79 0.16 9.4E-07 0.24 0.09 0.01 0.09 0.02 6.9E-05

Chr=chromosome; MAF=minor allele frequency;

Beta is the effect size on blood pressure, in mmHg, per allele based on the additive genetic model
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Table 2: Genome-wide association results for DBP SNPs with p value <1x10-6 sorted by 

DBP meta-analysis p value

SNP identifier Chr Position Gene MAF CHARGE 

Meta-analysis DBP

CHARGE 

Meta-analysis SBP

CHARGE 

Meta-analysis 

Hypertension

Beta SE P Beta SE p Beta SE p

rs3184504 12 110368991 SH2B3 0.48 0.50 0.09 1.7E-08 0.75 0.15 5.7E-07 0.07 0.02 7.4E-04

rs653178 12 110492139 ATXN2 0.48 0.50 0.09 2.0E-08 0.74 0.15 8.5E-07 0.07 0.02 7.7E-04

rs2681472 12 88533090 ATP2B1 0.17 -0.64 0.12 3.7E-08 -1.29 0.19 3.5E-11 -0.16 0.03 1.7E-08

rs4766578 12 110388754 ATXN2 0.49 0.49 0.09 4.2E-08 0.73 0.15 1.2E-06 0.06 0.02 1.9E-03

rs10774625 12 110394602 ATXN2 0.49 0.49 0.09 4.2E-08 0.73 0.15 1.1E-06 0.06 0.02 1.8E-03

rs2681492 12 88537220 ATP2B1 0.19 -0.62 0.11 4.6E-08 -1.26 0.18 3.0E-11 -0.14 0.03 8.4E-08

rs11105354 12 88550654 ATP2B1 0.17 -0.63 0.12 5.8E-08 -1.30 0.19 3.7E-11 -0.16 0.03 1.8E-08

rs17630235 12 111076069 TRAFD1 0.43 0.50 0.09 1.0E-07 0.69 0.15 1.1E-05 0.06 0.02 4.3E-03

rs17249754 12 88584717 0.17 -0.63 0.12 1.0E-07 -1.30 0.19 5.2E-11 -0.16 0.03 2.2E-08

rs11066188 12 111095097 0.43 0.50 0.09 1.1E-07 0.68 0.15 1.3E-05 0.06 0.02 4.2E-03

rs11105364 12 88593407 0.17 -0.63 0.12 1.2E-07 -1.30 0.19 4.8E-11 -0.16 0.03 2.1E-08

rs11105368 12 88598572 0.17 -0.63 0.12 1.2E-07 -1.30 0.19 5.3E-11 -0.16 0.03 2.2E-08

rs12579302 12 88574634 0.17 -0.62 0.12 1.2E-07 -1.29 0.19 6.2E-11 -0.16 0.03 2.2E-08

rs2384550 12 113837114 TBX3 0.35 -0.48 0.09 1.3E-07 -0.71 0.15 4.3E-06 -0.08 0.02 5.6E-05

rs1991391 12 113837049 0.35 -0.48 0.09 1.4E-07 -0.71 0.15 3.8E-06 -0.09 0.02 5.6E-05

rs6489992 12 113837152 0.37 -0.48 0.09 2.0E-07 -0.71 0.15 4.7E-06 -0.08 0.02 1.9E-04

rs11065987 12 110556807 0.42 0.48 0.09 2.2E-07 0.70 0.15 9.4E-06 0.06 0.02 4.1E-03

rs11024074 11 16873795 PLEKHA7 0.28 0.50 0.10 2.8E-07 0.79 0.16 1.6E-06 0.09 0.02 5.2E-05

rs11105378 12 88614872 0.17 -0.62 0.12 3.1E-07 -1.31 0.20 9.1E-11 -0.17 0.03 2.8E-08

rs12230074 12 88614998 0.17 -0.62 0.12 3.4E-07 -1.31 0.20 9.1E-11 -0.17 0.03 2.9E-08

rs7963771 12 113827875 0.31 -0.53 0.10 4.3E-07 -0.73 0.17 4.7E-05 -0.07 0.02 3.8E-03

rs381815 11 16858844 PLEKHA7 0.26 0.51 0.10 4.3E-07 0.84 0.16 5.8E-07 0.09 0.02 1.7E-04

rs4842666 12 88465680 0.17 -0.62 0.12 4.5E-07 -1.20 0.20 6.5E-09 -0.15 0.03 3.4E-07

rs7926335 11 16874445 PLEKHA7 0.26 0.51 0.10 4.8E-07 0.85 0.16 5.8E-07 0.09 0.02 1.9E-04

rs11105328 12 88466521 0.18 -0.61 0.12 5.1E-07 -1.11 0.20 4.2E-08 -0.15 0.03 7.1E-07

rs17696736 12 110971201 C12orf30 0.44 0.46 0.09 5.1E-07 0.64 0.15 3.5E-05 0.05 0.02 0.015

rs10744835 12 113838232 0.30 -0.49 0.10 7.1E-07 -0.68 0.16 3.9E-05 -0.07 0.02 1.5E-03

rs7977406 12 113843807 0.30 -0.49 0.10 7.6E-07 -0.69 0.16 2.9E-05 -0.08 0.02 1.2E-03

rs9815354 3 41887655 ULK4 0.17 0.60 0.12 7.8E-07 0.08 0.20 6.9E-01 -0.01 0.03 0.83

rs6495122 15 72912698 CPLX3/ULK3 0.42 0.45 0.09 8.0E-07 0.64 0.15 2.7E-05 0.07 0.02 4.0E-03

rs11014166 10 18748804 CACNB2 0.34 -0.46 0.09 8.7E-07 -0.74 0.15 2.1E-06 -0.11 0.02 7.8E-07

rs6768438 3 41840359 ULK4 0.16 0.59 0.12 9.7E-07 0.11 0.20 5.9E-01 0.01 0.03 0.84

rs9852991 3 41850459 ULK4 0.16 0.59 0.12 9.7E-07 0.11 0.20 5.9E-01 0.01 0.03 0.85

rs13401889 2 190618804 MSTN 0.21 0.54 0.11 9.7E-07 0.88 0.18 2.7E-06 0.10 0.03 1.6E-04

rs9816772 3 41847881 ULK4 0.16 0.59 0.12 9.7E-07 0.11 0.20 5.9E-01 0.01 0.03 0.85

Chr=chromosome; MAF=minor allele frequency;

Beta is the effect size on blood pressure, in mmHg, per allele based on the additive genetic model
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Table 2: Genome-wide association results for DBP SNPs with p value <1x10-6 sorted by 

DBP meta-analysis p value

SNP identifier Chr Position Gene MAF CHARGE 

Meta-analysis DBP

CHARGE 

Meta-analysis SBP

CHARGE 

Meta-analysis 

Hypertension

Beta SE P Beta SE p Beta SE p

rs3184504 12 110368991 SH2B3 0.48 0.50 0.09 1.7E-08 0.75 0.15 5.7E-07 0.07 0.02 7.4E-04

rs653178 12 110492139 ATXN2 0.48 0.50 0.09 2.0E-08 0.74 0.15 8.5E-07 0.07 0.02 7.7E-04

rs2681472 12 88533090 ATP2B1 0.17 -0.64 0.12 3.7E-08 -1.29 0.19 3.5E-11 -0.16 0.03 1.7E-08

rs4766578 12 110388754 ATXN2 0.49 0.49 0.09 4.2E-08 0.73 0.15 1.2E-06 0.06 0.02 1.9E-03

rs10774625 12 110394602 ATXN2 0.49 0.49 0.09 4.2E-08 0.73 0.15 1.1E-06 0.06 0.02 1.8E-03

rs2681492 12 88537220 ATP2B1 0.19 -0.62 0.11 4.6E-08 -1.26 0.18 3.0E-11 -0.14 0.03 8.4E-08

rs11105354 12 88550654 ATP2B1 0.17 -0.63 0.12 5.8E-08 -1.30 0.19 3.7E-11 -0.16 0.03 1.8E-08

rs17630235 12 111076069 TRAFD1 0.43 0.50 0.09 1.0E-07 0.69 0.15 1.1E-05 0.06 0.02 4.3E-03

rs17249754 12 88584717 0.17 -0.63 0.12 1.0E-07 -1.30 0.19 5.2E-11 -0.16 0.03 2.2E-08

rs11066188 12 111095097 0.43 0.50 0.09 1.1E-07 0.68 0.15 1.3E-05 0.06 0.02 4.2E-03

rs11105364 12 88593407 0.17 -0.63 0.12 1.2E-07 -1.30 0.19 4.8E-11 -0.16 0.03 2.1E-08

rs11105368 12 88598572 0.17 -0.63 0.12 1.2E-07 -1.30 0.19 5.3E-11 -0.16 0.03 2.2E-08

rs12579302 12 88574634 0.17 -0.62 0.12 1.2E-07 -1.29 0.19 6.2E-11 -0.16 0.03 2.2E-08

rs2384550 12 113837114 TBX3 0.35 -0.48 0.09 1.3E-07 -0.71 0.15 4.3E-06 -0.08 0.02 5.6E-05

rs1991391 12 113837049 0.35 -0.48 0.09 1.4E-07 -0.71 0.15 3.8E-06 -0.09 0.02 5.6E-05

rs6489992 12 113837152 0.37 -0.48 0.09 2.0E-07 -0.71 0.15 4.7E-06 -0.08 0.02 1.9E-04

rs11065987 12 110556807 0.42 0.48 0.09 2.2E-07 0.70 0.15 9.4E-06 0.06 0.02 4.1E-03

rs11024074 11 16873795 PLEKHA7 0.28 0.50 0.10 2.8E-07 0.79 0.16 1.6E-06 0.09 0.02 5.2E-05

rs11105378 12 88614872 0.17 -0.62 0.12 3.1E-07 -1.31 0.20 9.1E-11 -0.17 0.03 2.8E-08

rs12230074 12 88614998 0.17 -0.62 0.12 3.4E-07 -1.31 0.20 9.1E-11 -0.17 0.03 2.9E-08

rs7963771 12 113827875 0.31 -0.53 0.10 4.3E-07 -0.73 0.17 4.7E-05 -0.07 0.02 3.8E-03

rs381815 11 16858844 PLEKHA7 0.26 0.51 0.10 4.3E-07 0.84 0.16 5.8E-07 0.09 0.02 1.7E-04

rs4842666 12 88465680 0.17 -0.62 0.12 4.5E-07 -1.20 0.20 6.5E-09 -0.15 0.03 3.4E-07

rs7926335 11 16874445 PLEKHA7 0.26 0.51 0.10 4.8E-07 0.85 0.16 5.8E-07 0.09 0.02 1.9E-04

rs11105328 12 88466521 0.18 -0.61 0.12 5.1E-07 -1.11 0.20 4.2E-08 -0.15 0.03 7.1E-07

rs17696736 12 110971201 C12orf30 0.44 0.46 0.09 5.1E-07 0.64 0.15 3.5E-05 0.05 0.02 0.015

rs10744835 12 113838232 0.30 -0.49 0.10 7.1E-07 -0.68 0.16 3.9E-05 -0.07 0.02 1.5E-03

rs7977406 12 113843807 0.30 -0.49 0.10 7.6E-07 -0.69 0.16 2.9E-05 -0.08 0.02 1.2E-03

rs9815354 3 41887655 ULK4 0.17 0.60 0.12 7.8E-07 0.08 0.20 6.9E-01 -0.01 0.03 0.83

rs6495122 15 72912698 CPLX3/ULK3 0.42 0.45 0.09 8.0E-07 0.64 0.15 2.7E-05 0.07 0.02 4.0E-03

rs11014166 10 18748804 CACNB2 0.34 -0.46 0.09 8.7E-07 -0.74 0.15 2.1E-06 -0.11 0.02 7.8E-07

rs6768438 3 41840359 ULK4 0.16 0.59 0.12 9.7E-07 0.11 0.20 5.9E-01 0.01 0.03 0.84

rs9852991 3 41850459 ULK4 0.16 0.59 0.12 9.7E-07 0.11 0.20 5.9E-01 0.01 0.03 0.85

rs13401889 2 190618804 MSTN 0.21 0.54 0.11 9.7E-07 0.88 0.18 2.7E-06 0.10 0.03 1.6E-04

rs9816772 3 41847881 ULK4 0.16 0.59 0.12 9.7E-07 0.11 0.20 5.9E-01 0.01 0.03 0.85

Chr=chromosome; MAF=minor allele frequency;

Beta is the effect size on blood pressure, in mmHg, per allele based on the additive genetic model
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Table 3: Genome-wide association results for hypertension SNPs with p value <1x10-6  

sorted by hypertension meta-analysis p value

SNP identifier Chr Position Gene MAF CHARGE 

Meta-analysis 

Hypertension

CHARGE 

Meta-analysis SBP

CHARGE 

Meta-analysis DBP

Beta SE p Beta SE p Beta SE p

rs2681472 12 88533090 ATP2B1 0.17 -0.16 0.03 1.7E-08 -1.29 0.19 3.5E-11 -0.64 0.11 3.7E-08

rs11105354 12 88550654 ATP2B1 0.17 -0.16 0.03 1.8E-08 -1.30 0.19 3.7E-11 -0.63 0.11 5.8E-08

rs11105364 12 88593407 0.17 -0.16 0.03 2.1E-08 -1.30 0.19 4.8E-11 -0.63 0.12 1.2E-07

rs17249754 12 88584717 0.17 -0.16 0.03 2.2E-08 -1.30 0.19 5.2E-11 -0.63 0.12 1.0E-07

rs11105368 12 88598572 0.17 -0.16 0.03 2.2E-08 -1.30 0.19 5.3E-11 -0.63 0.12 1.2E-07

rs12579302 12 88574634 0.17 -0.16 0.03 2.2E-08 -1.29 0.19 6.2E-11 -0.62 0.12 1.2E-07

rs11105378 12 88614872 0.16 -0.17 0.03 2.8E-08 -1.31 0.20 9.1E-11 -0.62 0.12 3.1E-07

rs12230074 12 88614998 0.16 -0.17 0.03 2.8E-08 -1.31 0.20 9.1E-11 -0.62 0.12 3.4E-07

rs2681492 12 88537220 ATP2B1 0.19 -0.14 0.03 8.4E-08 -1.26 0.18 3.0E-11 -0.62 0.11 4.6E-08

rs4842666 12 88465680 0.17 -0.15 0.03 3.4E-07 -1.20 0.20 6.5E-09 -0.62 0.12 4.5E-07

rs7640747 3 37571809 ITGA9 0.38 0.12 0.02 4.8E-07 0.56 0.16 5.9E-04 0.32 0.09 9.5E-04

rs11105328 12 88466521 0.18 -0.15 0.03 7.1E-07 -1.11 0.20 4.2E-08 -0.61 0.12 5.1E-07

rs743395 3 37573386 ITGA9 0.38 0.12 0.02 7.5E-07 0.58 0.16 4.4E-04 0.33 0.10 8.0E-04

rs11014166 10 18748804 CACNB2 0.17 -0.11 0.02 7.8E-07 -0.74 0.15 2.1E-06 -0.46 0.09 8.7E-07

Chr=chromosome; MAF=minor allele frequency;

 Beta is the effect size on blood pressure in mmHg, per allele based on the additive genetic model
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GWA study of blood pressure: CHARGE consortium

Table 3: Genome-wide association results for hypertension SNPs with p value <1x10-6  

sorted by hypertension meta-analysis p value

SNP identifier Chr Position Gene MAF CHARGE 

Meta-analysis 

Hypertension

CHARGE 

Meta-analysis SBP

CHARGE 

Meta-analysis DBP

Beta SE p Beta SE p Beta SE p

rs2681472 12 88533090 ATP2B1 0.17 -0.16 0.03 1.7E-08 -1.29 0.19 3.5E-11 -0.64 0.11 3.7E-08

rs11105354 12 88550654 ATP2B1 0.17 -0.16 0.03 1.8E-08 -1.30 0.19 3.7E-11 -0.63 0.11 5.8E-08

rs11105364 12 88593407 0.17 -0.16 0.03 2.1E-08 -1.30 0.19 4.8E-11 -0.63 0.12 1.2E-07

rs17249754 12 88584717 0.17 -0.16 0.03 2.2E-08 -1.30 0.19 5.2E-11 -0.63 0.12 1.0E-07

rs11105368 12 88598572 0.17 -0.16 0.03 2.2E-08 -1.30 0.19 5.3E-11 -0.63 0.12 1.2E-07

rs12579302 12 88574634 0.17 -0.16 0.03 2.2E-08 -1.29 0.19 6.2E-11 -0.62 0.12 1.2E-07

rs11105378 12 88614872 0.16 -0.17 0.03 2.8E-08 -1.31 0.20 9.1E-11 -0.62 0.12 3.1E-07

rs12230074 12 88614998 0.16 -0.17 0.03 2.8E-08 -1.31 0.20 9.1E-11 -0.62 0.12 3.4E-07

rs2681492 12 88537220 ATP2B1 0.19 -0.14 0.03 8.4E-08 -1.26 0.18 3.0E-11 -0.62 0.11 4.6E-08

rs4842666 12 88465680 0.17 -0.15 0.03 3.4E-07 -1.20 0.20 6.5E-09 -0.62 0.12 4.5E-07

rs7640747 3 37571809 ITGA9 0.38 0.12 0.02 4.8E-07 0.56 0.16 5.9E-04 0.32 0.09 9.5E-04

rs11105328 12 88466521 0.18 -0.15 0.03 7.1E-07 -1.11 0.20 4.2E-08 -0.61 0.12 5.1E-07

rs743395 3 37573386 ITGA9 0.38 0.12 0.02 7.5E-07 0.58 0.16 4.4E-04 0.33 0.10 8.0E-04

rs11014166 10 18748804 CACNB2 0.17 -0.11 0.02 7.8E-07 -0.74 0.15 2.1E-06 -0.46 0.09 8.7E-07

Chr=chromosome; MAF=minor allele frequency;

 Beta is the effect size on blood pressure in mmHg, per allele based on the additive genetic model
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Table 4: Meta-analysis in CHARGE and Global BPgen of top 10 loci for systolic and diastolic 

blood pressure and hypertension in CHARGE

CHARGE meta- analysis 

results

Global BPgen meta-

analysis results

CHARGE + Global BPgen 

meta-analysis

SNP 

identifier 

Chr Position Nearest 

Gene 

Alleles 

(coded/other) 

Freq. of 

coded allele 

Beta SE p-value Beta SE p-value Beta SE p-value 

Systolic blood pressure 

rs12046278 1 10,722,164 CASZ1 T/C 0.64 -0.84 0.18 1.84E-06 -0.29 0.15 5.71E-02 -0.53 0.12 4.77E-06 

rs7571613 2 190,513,907 PMS1 A/G 0.82 -0.96 0.19 7.28E-07 -0.23 0.16 1.59E-01 -0.54 0.13 1.90E-05 

rs448378 3 170,583,593 MDS1 A/G 0.52 -0.71 0.15 1.28E-06 -0.36 0.13 4.76E-03 -0.51 0.10 1.18E-07 

rs2736376 8 11,155,175 MTMR9 C/G 0.13 -1.08 0.23 1.90E-06 -0.06 0.19 7.36E-01 -0.48 0.15 9.15E-04 

rs1910252 8 49,569,915 EFCAB1 T/C 0.18 -0.93 0.19 1.70E-06 -0.07 0.17 6.80E-01 -0.43 0.13 6.13E-04 

rs11014166 10 18,748,804 CACNB2 A/T 0.66 0.74 0.16 2.11E-06 0.33 0.13 1.31E-02 0.50 0.10 7.03E-07 

rs1004467 10 104,584,497 CYP17A1 A/G 0.90 1.20 0.25 1.99E-06 0.94 0.21 1.08E-05 1.05 0.16 1.28E-10 

rs381815 11 16,858,844 PLEKHA7 T/C 0.26 0.84 0.17 5.76E-07 0.52 0.14 2.72E-04 0.65 0.11 1.89E-09 

rs2681492 12 88,537,220 ATP2B1 T/C 0.80 1.26 0.19 3.01E-11 0.50 0.17 4.07E-03 0.85 0.13 3.76E-11 

rs3184504 12 110,368,991 SH2B3 T/C 0.48 0.75 0.15 5.73E-07 0.45 0.13 6.36E-04 0.58 0.10 4.52E-09 

Diastolic blood pressure 

rs13423988 2 68,764,770 GPR73/

ARHGAP25 

T/C 0.17 0.59 0.12 1.09E-06 0.11 0.11 3.22E-01 0.33 0.08 5.00E-05 

rs13401889 2 190,618,804 MSTN T/C 0.79 -0.54 0.11 9.58E-07 -0.10 0.11 3.55E-01 -0.31 0.08 4.82E-05 

rs9815354 3 41,887,655 ULK4 A/G 0.17 0.60 0.12 7.88E-07 0.40 0.11 3.79E-04 0.49 0.08 2.54E-09 

rs7016759 8 49,574,969 EFCAB1 T/C 0.83 0.57 0.12 1.87E-06 0.06 0.11 5.79E-01 0.30 0.08 2.29E-04 

rs11014166 10 18,748,804 CACNB2 A/T 0.66 0.46 0.09 8.82E-07 0.28 0.09 1.46E-03 0.37 0.06 1.24E-08 

rs11024074 11 16,873,795 PLEKHA7 T/C 0.72 -0.50 0.10 2.83E-07 -0.17 0.09 6.82E-02 -0.33 0.07 1.20E-06 

rs2681472 12 88,533,090 ATP2B1 A/G 0.83 0.64 0.12 3.74E-08 0.36 0.12 2.43E-03 0.50 0.08 1.47E-09 

rs3184504 12 110,368,991 SH2B3 T/C 0.48 0.50 0.09 1.68E-08 0.45 0.09 2.83E-07 0.48 0.06 2.58E-14 

rs2384550 12 113,837,114 TBX3/TBX5 A/G 0.35 -0.48 0.09 1.32E-07 -0.23 0.09 1.06E-02 -0.35 0.06 3.75E-08 

rs6495122 15 72,912,698 CSK/ULK3 A/C 0.42 0.45 0.09 8.10E-07 0.35 0.09 3.98E-05 0.40 0.06 1.84E-10 

Hypertension 

rs17806132 2 190,416,532 PMS1 A/G 0.16 0.14 0.03 1.14E-05 0.04 0.04 2.87E-01 0.10 0.02 4.70E-05 

rs305489 3 11,986,163 SYN2 A/G 0.55 0.10 0.02 4.20E-06 0.01 0.03 7.75E-01 0.06 0.02 1.70E-04 

rs7640747 3 37,571,809 ITGA9 C/G 0.62 -0.12 0.02 4.53E-07 -0.02 0.03 4.12E-01 -0.08 0.02 1.24E-05 

rs11775334 8 10,109,030 MSRA A/G 0.32 0.10 0.02 1.03E-05 0.05 0.03 5.86E-02 0.08 0.02 4.05E-06 

rs899364 8 11,366,954 FAM167A/BLK T/G 0.32 -0.10 0.02 6.95E-06 -0.04 0.03 1.32E-01 -0.08 0.02 1.01E-05 

rs11014166 10 18,748,804 CACNB2 A/T 0.66 0.11 0.02 7.96E-07 0.07 0.03 1.06E-02 0.09 0.02 5.72E-08 

rs2681472 12 88,533,090 ATP2B1 A/G 0.83 0.16 0.03 1.65E-08 0.13 0.04 2.15E-04 0.15 0.02 1.75E-11 

rs278126 12 118,620,100 CIT T/G 0.28 0.11 0.02 8.34E-06 -0.01 0.03 6.72E-01 0.06 0.02 1.74E-03 

rs11612893 12 129,290,572 FZD10/PIWIL1 T/G 0.10 -0.19 0.04 7.62E-06 -0.04 0.06 4.19E-01 -0.14 0.03 5.50E-05 

rs16982520 20 57,192,115 ZNF831/ EDN3 A/G 0.88 -0.14 0.03 4.95E-06 -0.11 0.04 7.44E-03 -0.13 0.02 1.59E-07 
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Table 4: Meta-analysis in CHARGE and Global BPgen of top 10 loci for systolic and diastolic 

blood pressure and hypertension in CHARGE

CHARGE meta- analysis 

results

Global BPgen meta-

analysis results

CHARGE + Global BPgen 

meta-analysis

SNP 

identifier 

Chr Position Nearest 

Gene 

Alleles 

(coded/other) 

Freq. of 

coded allele 

Beta SE p-value Beta SE p-value Beta SE p-value 

Systolic blood pressure 

rs12046278 1 10,722,164 CASZ1 T/C 0.64 -0.84 0.18 1.84E-06 -0.29 0.15 5.71E-02 -0.53 0.12 4.77E-06 

rs7571613 2 190,513,907 PMS1 A/G 0.82 -0.96 0.19 7.28E-07 -0.23 0.16 1.59E-01 -0.54 0.13 1.90E-05 

rs448378 3 170,583,593 MDS1 A/G 0.52 -0.71 0.15 1.28E-06 -0.36 0.13 4.76E-03 -0.51 0.10 1.18E-07 

rs2736376 8 11,155,175 MTMR9 C/G 0.13 -1.08 0.23 1.90E-06 -0.06 0.19 7.36E-01 -0.48 0.15 9.15E-04 

rs1910252 8 49,569,915 EFCAB1 T/C 0.18 -0.93 0.19 1.70E-06 -0.07 0.17 6.80E-01 -0.43 0.13 6.13E-04 

rs11014166 10 18,748,804 CACNB2 A/T 0.66 0.74 0.16 2.11E-06 0.33 0.13 1.31E-02 0.50 0.10 7.03E-07 

rs1004467 10 104,584,497 CYP17A1 A/G 0.90 1.20 0.25 1.99E-06 0.94 0.21 1.08E-05 1.05 0.16 1.28E-10 

rs381815 11 16,858,844 PLEKHA7 T/C 0.26 0.84 0.17 5.76E-07 0.52 0.14 2.72E-04 0.65 0.11 1.89E-09 

rs2681492 12 88,537,220 ATP2B1 T/C 0.80 1.26 0.19 3.01E-11 0.50 0.17 4.07E-03 0.85 0.13 3.76E-11 

rs3184504 12 110,368,991 SH2B3 T/C 0.48 0.75 0.15 5.73E-07 0.45 0.13 6.36E-04 0.58 0.10 4.52E-09 

Diastolic blood pressure 

rs13423988 2 68,764,770 GPR73/

ARHGAP25 

T/C 0.17 0.59 0.12 1.09E-06 0.11 0.11 3.22E-01 0.33 0.08 5.00E-05 

rs13401889 2 190,618,804 MSTN T/C 0.79 -0.54 0.11 9.58E-07 -0.10 0.11 3.55E-01 -0.31 0.08 4.82E-05 

rs9815354 3 41,887,655 ULK4 A/G 0.17 0.60 0.12 7.88E-07 0.40 0.11 3.79E-04 0.49 0.08 2.54E-09 

rs7016759 8 49,574,969 EFCAB1 T/C 0.83 0.57 0.12 1.87E-06 0.06 0.11 5.79E-01 0.30 0.08 2.29E-04 

rs11014166 10 18,748,804 CACNB2 A/T 0.66 0.46 0.09 8.82E-07 0.28 0.09 1.46E-03 0.37 0.06 1.24E-08 

rs11024074 11 16,873,795 PLEKHA7 T/C 0.72 -0.50 0.10 2.83E-07 -0.17 0.09 6.82E-02 -0.33 0.07 1.20E-06 

rs2681472 12 88,533,090 ATP2B1 A/G 0.83 0.64 0.12 3.74E-08 0.36 0.12 2.43E-03 0.50 0.08 1.47E-09 

rs3184504 12 110,368,991 SH2B3 T/C 0.48 0.50 0.09 1.68E-08 0.45 0.09 2.83E-07 0.48 0.06 2.58E-14 

rs2384550 12 113,837,114 TBX3/TBX5 A/G 0.35 -0.48 0.09 1.32E-07 -0.23 0.09 1.06E-02 -0.35 0.06 3.75E-08 

rs6495122 15 72,912,698 CSK/ULK3 A/C 0.42 0.45 0.09 8.10E-07 0.35 0.09 3.98E-05 0.40 0.06 1.84E-10 

Hypertension 

rs17806132 2 190,416,532 PMS1 A/G 0.16 0.14 0.03 1.14E-05 0.04 0.04 2.87E-01 0.10 0.02 4.70E-05 

rs305489 3 11,986,163 SYN2 A/G 0.55 0.10 0.02 4.20E-06 0.01 0.03 7.75E-01 0.06 0.02 1.70E-04 

rs7640747 3 37,571,809 ITGA9 C/G 0.62 -0.12 0.02 4.53E-07 -0.02 0.03 4.12E-01 -0.08 0.02 1.24E-05 

rs11775334 8 10,109,030 MSRA A/G 0.32 0.10 0.02 1.03E-05 0.05 0.03 5.86E-02 0.08 0.02 4.05E-06 

rs899364 8 11,366,954 FAM167A/BLK T/G 0.32 -0.10 0.02 6.95E-06 -0.04 0.03 1.32E-01 -0.08 0.02 1.01E-05 

rs11014166 10 18,748,804 CACNB2 A/T 0.66 0.11 0.02 7.96E-07 0.07 0.03 1.06E-02 0.09 0.02 5.72E-08 

rs2681472 12 88,533,090 ATP2B1 A/G 0.83 0.16 0.03 1.65E-08 0.13 0.04 2.15E-04 0.15 0.02 1.75E-11 

rs278126 12 118,620,100 CIT T/G 0.28 0.11 0.02 8.34E-06 -0.01 0.03 6.72E-01 0.06 0.02 1.74E-03 

rs11612893 12 129,290,572 FZD10/PIWIL1 T/G 0.10 -0.19 0.04 7.62E-06 -0.04 0.06 4.19E-01 -0.14 0.03 5.50E-05 

rs16982520 20 57,192,115 ZNF831/ EDN3 A/G 0.88 -0.14 0.03 4.95E-06 -0.11 0.04 7.44E-03 -0.13 0.02 1.59E-07 
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Table 5. SNPs association with blood pressure and altered tissue-specific gene expression

SNP Chr Position Nearest gene(s) SBP pval DBP pval HTN pval Expressed Gene(s) eSNP pval‡

Liver eSNPs

rs7537765 1 11809889 NPPA; NPPB; CLCN6; 

MTHFR

1.8E-05 9.2E-04 1.5E-04 CLCN6 1.4E-07

rs249209 5 79902964 DHFR; DP58; UNQ9217 8.5E-05 0.07 1.2E-03 HSS00169533 4.4E-05

rs10963072 9 17368775 C9orf39 0.03 0.11 6.3E-05 C9orf39 2.0E-06

rs525381 12 255052 JARID1A; SLC6A13 9.3E-05 0.14 5.3E-04 CCDC77; SLC6A12 2.1E-10

rs739496 12 110372041 SH2B3; ATXN2 2.9E-04 1.3E-05 0.01 HSS00340376 1.1E-06

rs7312321 12 118520617 CCDC60 9.0E-04 0.03 6.0E-05 Contig30372_RC 1.1E-30

rs6495126 15 72962078 CPLX3; ULK3; MPI; 

COX5A; LMAN1L; 

SCAMP2; C15orf17

3.0E-04 3.6E-05 1.2E-04 ULK3; AK001918; 

RPP25

8.6E-06

Lymphoblastoid cell line eSNPs

rs1384883 1 74274065 FPGT 9.9E-03 7.2E-05 2.5E-03 LRRC44;BC042056 1.4E-21

rs12466395 2 190488943 PMS1 8.8E-04 5.3E-05 8.8E-05 ORMDL1 2.4E-15

rs7571613 2 190513907 PMS1 7.3E-07 2.2E-06 5.3E-04 ORMDL1;PMS1 1.5E-08

rs1454301 2 190518307 PMS1 1.1E-06 2.2E-06 1.1E-03 PMS1;ORMDL1 2.5E-09

rs2053163 2 190535268 PMS1 1.7E-05 5.8E-06 5.8E-03 ORMDL1 2.1E-12

rs6749643 2 190543718 MSTN 1.6E-06 2.2E-06 7.3E-04 ORMDL1;PMS1 5.5E-09

rs7575810 2 190560410 MSTN 2.5E-05 2.7E-05 0.03 ORMDL1 3.6E-10

rs1474359 2 190641251 MSTN 1.9E-05 1.2E-05 1.0E-03 ORMDL1;PMS1 1.7E-11

rs1052501 3 41900402 ULK4 0.84 4.2E-05 0.64 ULK4 3.9E-08

rs1716975 3 41935010 ULK4 0.94 2.2E-06 0.96 ULK4 7.9E-08

rs2272007 3 41971140 ULK4 0.87 1.5E-06 0.83 ULK4 2.7E-08

rs4572871 4 83979911 SEC31A; SCD5 2.3E-05 9.7E-03 3.5E-04 SCD5 6.4E-41

rs6601414 8 10014158 MSRA 3.0E-04 3.4E-05 4.9E-03 C8orf5 8.2E-09

rs13254942 8 10295088 MSRA 5.6E-05 1.9E-03 1.5E-04 C8orf5;FAM167A 1.0E-08

rs2898290 8 11471318 BLK 2.3E-05 7.0E-03 7.9E-05 C8orf5;FAM167A;BLK 3.7E-12

rs4980878 12 297338 JARID1A; SLC6A13 4.8E-05 0.12 1.6E-04 JARID1A 2.7E-09

rs1860360 12 364161 JARID1A; CCDC77 6.2E-05 0.10 1.6E-04 JARID1A 2.7E-09

Highlighted p values are < 1/n, where n is the number of eSNPs interrogated. 

‡ p value for association of eSNP with gene expression in liver or LCL.
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Figure 1 This figure shows deviation in blood pressure or odds ratio for hypertension as solid diamonds with 

whiskers extending to ±1 standard error. The top panels present deviation from mean systolic (left panel) and 

diastolic blood pressure (right panel) in mmHg according to weighted risk score. The bottom panels show 

odds ratios for hypertension in relation to systolic (left panel) and diastolic blood pressure (right panel) weighted 

risk score. DBP=diastolic blood pressure; HTN=hypertension; SBP=systolic blood pressure. The p values 

for slope across risk score groups were all highly significant: 1.8x10-27 (systolic blood pressure vs. systolic 

blood pressure risk score), 1.7x10-56 (diatolic blood pressure vs. diastolic blood pressure risk score), 1.4x10-17 

(hypertension vs. systolic blood pressure risk score), and 8.4x10-10 (hypertension vs. diastolic blood pressure 

risk score).
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Discussion

In this meta-analysis of results from 29,136 participants from six large prospective observational 

studies in the CHARGE Consortium, we identified multiple loci with evidence of association with 

levels of systolic and diastolic blood pressure and hypertension. We further replicated genome-

wide significant SNPs in 34,433 independent subjects from the Global BPgen Consortium, and the 

joint analysis of results from the two consortia identified 11 genome-wide significant associations: 

four loci for SBP (ATP2B1, P = 3.8 x 10-11; CYP17A1, P =1.3 x 10-10; PLEKHA7, P = 1.9 x 10-9; 

SH2B3, P = 4.5 x 10-9), six loci for DBP (ATP2B1, P = 1.5 x 10-9; CACNB2, P = 1.2 x 10-8; CSK-

ULK3 P = 1.8 x 10-10; SH2B3, P = 2.6 _ 10_14; TBX3-TBX5, P = 3.8 x 10-8; ULK4, P = 2.5 x 10-9) 

and one locus for hypertension (ATP2B1, P = 1.8 x 10-11). There was considerable concordance 

among top loci across all three phenotypes: ATP2B1 showed significant association with SBP, 

DBP and hypertension, CACNB2 showed strong evidence of association with all three traits and 

SH2B3 showed significant association with SBP and DBP. Of note, rs1004467, a common intronic 

variant in CYP17A1, a gene associated with a rare mendelian form of hypertension, emerged 

as a genome-wide significant locus in the meta-analysis of results from both consortia. Several 

additional loci showed suggestive association results, including MDS1, ITGA9, EDN3 and PMS1-

MSTN. The top ten risk alleles for SBP and DBP within CHARGE were each associated with 

about a 1 and 0.5 mm Hg increase in SBP and DBP, respectively; there was a continuous and 

graded relation of the number of risk alleles to mean levels of SBP and DBP and odds ratios 

for hypertension. Last, analysis of gene expression associated SNPs within our GWAS provided 

additional promising blood pressure candidates (by virtue of the identified expressed genes), 

including KDM5A-SLC6A12-CCDC77, ORMDL1 and CLCN6.

We identified genome-wide significant association of ATP2B1 with SBP, DBP and hypertension 

(17% increase in odds per risk allele and 37% increase for two risk alleles). This gene encodes 

PMCA1, a plasma membrane calcium/calmodulin-dependent ATPase that is expressed in vascular 

endothelium and is involved in calcium pumping from the cytosol to the extracellular compartment.27 

An investigation of cultured rat aortic smooth muscle cells found elevated PMCA1 mRNA levels in 

spontaneously hypertensive rats compared to non-hypertensive controls, consistent with a role of 

ATP2B1 in blood pressure regulation.28

Genetic variation can contribute to altered blood pressure regulation by altering the structure of 

encoded proteins or by altering gene expression (that is, protein quantity). For SH2B3 we have 

strong evidence to support both mechanisms; a missense SNP (altered protein structure) and an 

eSNP (altered expression) were associated with blood pressure. Our most highly significant SNP for 

DBP (and our second strongest signal for SBP) was the nonsynonymous SNP rs3184504 in SH2B3 

(Tables 1, 2 and 4), which introduces the amino acid substitution W262R in a plekstrin homology 

domain on exon 3. This coding variant is predicted by PolyPhen29 to be probably damaging to 

the encoded protein. This SNP has recently also been found to be reproducibly associated with 

type 1 diabetes mellitus and celiac disease.30,31 The association of this SNP with two autoimmune 

diseases suggests that immune response pathways may influence blood pressure by mechanisms 
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previously not appreciated. SH2B3 knockout mice are viable but show increased sensitivity to 

cytokines and abnormal growth factor signaling.32 In addition, eSNP rs739496 (Table 5) was 

associated with blood pressure levels and with liver expression of a transcript adjacent to SH2B3. 

SH2B3 is located in a large block of linkage disequilibrium on chromosome 12 that contained 

multiple association signals across 700 kb from rs3184504 in SH2B3 to rs11066188 in C12orf51 

for SBP and DBP, and that contains many genes (Fig. 1). Located near the midpoint between 

SH2B3 and C12orf51 is ALDH2, encoding acetaldehyde dehydrogenase 2, a critical enzyme in 

alcohol metabolism. A recent meta-analysis found that male homozygotes for the K671E variant 

(rs671) in ALDH2 had an increased odds of hypertension (odds ratio 2.42, P = 4.8 x 10-6) and 7 mm 

Hg higher mean SBP (P = 1.1 x 10-12) when compared with major allele homozygotes.33 Although 

rs671 is absent in individuals of European descent in HapMap and was not included in our GWAS, 

our intriguing findings in the region encircling ALDH2 are consistent with a role of this gene in blood 

pressure regulation in people of European descent.

Another SNP (rs1004467) attaining genome-wide significance is in CYP17A1, encoding steroid 

17-alpha-hydroxylase, an enzyme necessary for steroidogenesis. Mutations in CYP17A1 are 

found in individuals with 17a-hydroxylase deficiency, which is characterized by congenital 

adrenal hyperplasia with apparent mineralocorticoid excess, salt retention, hypokalemia and 

hypertension34; these mutations can lead to a spectrum of phenotypic severity.35 Although 

mutations in CYP17A1 causing phenotypic 17a-hydroxylase deficiency are rare, our data suggest 

that common variants in CYP17A1 may also be associated with blood pressure by promoting mild 

forms of enzyme deficiency or dysfunction.

CACNB2, encoding the beta-2 subunit of a voltage-gated calcium channel, was associated with 

DBP and showed suggestive evidence of association with SBP and hypertension. The gene 

is expressed in the heart and a nonsynomymous variant in CACNB2 was identified in affected 

individuals with Brugada syndrome.36 CACNB2 is one member of a family of voltage-gated calcium 

channel genes, several of which have effects on blood pressure regulation and serve as targets 

of calcium channel blockers. The beta-2 subunit interacts with alpha-1 calcium channels (Cav1.2) 

and this is a mechanism by which variation in CACNB2 may alter blood pressure.37

The joint meta-analysis of CHARGE and Global BPgen (Table 4) also identified PLEKHA7, ULK4, 

TBX3-TBX5 and a region adjacent to CSK-ULK3-CYP1A2 as genome-wide significant loci. 

Mutations in TBX5 (T-box transcription factor 5) cause structural cardiac malformations and can 

be associated with altered expression of NPPA38, which also was a locus of interest in our eSNP 

analysis. CSK encodes cytoplasmic tyrosine kinase, which is involved in angiotensin II– dependent 

vascular smooth muscle cell proliferation.39 Little is known about ULK3 or ULK4 and how variation 

in these genes might affect blood pressure. Three CHARGE loci that were identified as genome-

wide significant in this analysis were also found to be genome-wide significant in the Global BPgen 

Consortium meta-analysis: CYP17A1 (rs1004467 in CYP17A1 in CHARGE versus rs11191548 in 

Global BPgen, respectively; r2 = 0.42), SH2B3-ATXN2 (rs3184504 versus rs653178; r2 = 1.0), 

and a locus containing CSK-ULK3-CYP1A2 (rs6495122 versus rs4886606; r2 = 0.56). In addition, 
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both consortia identified MDS1 as a locus of interest (rs448378 versus rs1918974; r 2 = 1.0). The 

region containing MTHFR-NPPA, which attained genome-wide significance in Global BPgen, was 

identified as a region of interest in the CHARGE analysis of eSNPs (Table 5; rs7537765 in CHARGE 

vs. rs17367504 in Global BPgen; r2 = 0.94). Other loci of interest (5 x 10-8 < P < 4 x 10-7) in the 

joint analysis of CHARGE and Global BPgen were MDS1 (rs448378, P = 1.2 x 10-7) and a region 

adjacent to EDN3 (rs16982520, P = 1.6 x 10-7). Endothelin-3 may have a role in renal-mediated 

hypertension in the rat.40

A search for putative functional variation within our GWAS identified five nonsynonymous SNPs. In 

addition to rs3184504 in SH2B3 (discussed above), rs267561 in ITGA9, which showed suggestive 

evidence of association with hypertension (P = 2.6 x 10-6), produces an E507G substitution that is 

predicted by PolyPhen to have possibly damaging effects26. Three linked nonsynonymous SNPs in 

ULK4 showed suggestive evidence of association with DBP (rs2272007, P = 1.5 < 10-6; rs3774372, 

P = 1.6 x 10-6; rs1716975, P = 2.2 x 10-6; pairwise r2 = 0.82–1.0); these amino-acid substitutions 

are predicted to be benign individually, but their conjoint effects on protein function is unknown. 

Interrogation of our GWAS results for SNPs that are associated with blood pressure phenotypes 

and altered gene expression confirmed SH2B3, ULK4 and ULK3 as loci of interest (Table 5). 

Another locus detected via eSNP associations with blood pressure was rs7537765 near NPPA, 

which encodes atrial natriuretic peptide and which was in linkage disequilibrium with rs198358 (r2 

= 0.58), a SNP that has been shown to be associated with higher circulating natriuretic peptide 

levels and lower SBP.41 Other promising candidates by virtue of the expressed genes in our eSNP 

analysis are KDM5A-SLC6A12-CCDC77, ORMDL1-PMS1 and CLCN6.

Although the conjoint effect of multiple risk alleles on blood pressure can be substantial, our findings 

underscore the small effect size of individual common allelic variants—about 1 mmHg each for 

systolic and 0.5 mmHg each for diastolic blood pressure per variant allele—and the necessity of 

very large sample sizes for detection of robust and significant results. The combined analysis of 

CHARGE and Global BPgen for our top SNPs reflects a sample size of 63,569 individuals and 

illustrates the advantage of large consortia for meta-analysis of underpinnings of common complex 

traits. Given the small effect sizes detected, it is not surprising that previous blood pressure GWAS 

failed to identify genome-wide significant results at P < 5 x 10-8.13-18

Understanding of allelic variation affecting blood pressure in the general population is in its infancy; 

until recently, there were few known genetic variants reproducibly associated with blood pressure 

variation. Our CHARGE findings, in conjunction with those of the Global BPgen Consortium,20 

establish the utility of genome-wide association approaches to identify common allelic variants 

pertaining to blood pressure physiology and pathophysiology. Our findings are consistent with the 

hypothesis that variation in scores, if not hundreds, of genes contribute to blood pressure variation. 

This hypothesis is supported by the excess number of SNPs showing association at P < 1 x 10-3 

with blood pressure phenotypes. Future efforts to identify additional alleles associated with blood 

pressure will require complementary strategies, including larger genome-wide studies to identify 

additional common alleles and resequencing efforts in large samples to identify rare variants.
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In aggregate, the proportion of blood pressure variation explained by the top ten CHARGE SBP- 

and DBP-associated SNPs across the six cohorts is 1% (increment in r2) after accounting for 

the major nongenetic determinants of blood pressure: age, age squared, sex and body mass 

index. The conjoint effect of multiple risk alleles on blood pressure levels, however, amounts to 

several mmHg (Fig. 1), which is sufficient to increase cardiovascular disease risk. Observational 

data indicate that a prolonged increase in DBP of 5 mmHg is associated with a 34% increase in 

risk for stroke and a 21% increase in risk of coronary events.42

Future analyses using larger samples can benefit from specific features of our study design. First, 

the vast majority of blood pressure values used in our analyses were obtained more than 15 years 

ago, when blood pressure treatment, which confounds genetic analyses, was less widely used; 

contemporary blood pressure data might be less likely to reveal genetic associations. Second, 

because allelic variation may affect both the low and high ends of the blood pressure distribution, 

we used the more powerful approach of analyzing blood pressure as a continuous trait, yet we 

also identified a genome-wide significant locus for hypertension. At the same time, one should 

recognize that our study results, based on participants of European descent, cannot necessarily 

be generalized to other populations. Although our analysis of eSNPs indicates that some of 

the genome-wide significant blood pressure loci we identified are associated with altered gene 

expression, the relevance of these findings to blood pressure is speculative. A similar approach, 

however, has been used to identify putative disease genes for childhood asthma43, Crohn’s 

disease44 and a network of genes implicated in obesity.45

In conclusion, we have identified multiple genome-wide significant blood pressure loci that can be 

used to guide fine-mapping efforts to pinpoint causal variants and to understand how the implicated 

genes alter blood pressure physiology and contribute to hypertension. The characterization of new 

blood pressure–associated loci can serve as a basis for future approaches to early detection of 

high-risk individuals and for the development of novel therapies for the prevention or treatment of 

hypertension.

 



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 45

GWA study of blood pressure: CHARGE consortium

References

1.	� Fields LE, Burt VL, Cutler JA, Hughes J, Roccella EJ, Sorlie P. The burden of adult hypertension 

in the United States 1999 to 2000: a rising tide. Hypertension. Oct 2004;44(4):398-404.

2.	� Lawes CM, Vander Hoorn S, Rodgers A. Global burden of blood-pressure-related disease, 

2001. Lancet. May 3 2008;371(9623):1513-1518.

3.	� Effects of treatment on morbidity in hypertension. Results in patients with diastolic blood 

pressures averaging 115 through 129 mm Hg. JAMA. Dec 11 1967;202(11):1028-1034.

4.	� Prevention of stroke by antihypertensive drug treatment in older persons with isolated systolic 

hypertension. Final results of the Systolic Hypertension in the Elderly Program (SHEP). SHEP 

Cooperative Research Group. JAMA. Jun 26 1991;265(24):3255-3264.

5.	� Levy D, DeStefano AL, Larson MG, et al. Evidence for a gene influencing blood pressure on 

chromosome 17. Genome scan linkage results for longitudinal blood pressure phenotypes in 

subjects from the framingham heart study. Hypertension. Oct 2000;36(4):477-483.

6.	� Chang YP, Liu X, Kim JD, et al. Multiple genes for essential-hypertension susceptibility on 

chromosome 1q. American journal of human genetics. Feb 2007;80(2):253-264.

7.	� Hirschhorn JN, Lohmueller K, Byrne E, Hirschhorn K. A comprehensive review of genetic 

association studies. Genetics in medicine : official journal of the American College of Medical 

Genetics. Mar-Apr 2002;4(2):45-61.

8.	� Koivukoski L, Fisher SA, Kanninen T, et al. Meta-analysis of genome-wide scans for 

hypertension and blood pressure in Caucasians shows evidence of susceptibility regions on 

chromosomes 2 and 3. Human molecular genetics. Oct 1 2004;13(19):2325-2332.

9.	� Lifton RP. Genetic determinants of human hypertension. Proceedings of the National 

Academy of Sciences of the United States of America. Sep 12 1995;92(19):8545-8551.

10.	� Tobin MD, Tomaszewski M, Braund PS, et al. Common variants in genes underlying 

monogenic hypertension and hypotension and blood pressure in the general population. 

Hypertension. Jun 2008;51(6):1658-1664.

11.	� Manolio TA, Brooks LD, Collins FS. A HapMap harvest of insights into the genetics of 

common disease. The Journal of clinical investigation. May 2008;118(5):1590-1605.

12.	� McCarthy MI, Abecasis GR, Cardon LR, et al. Genome-wide association studies for complex 

traits: consensus, uncertainty and challenges. Nat Rev Genet. May 2008;9(5):356-369.

13.	� Levy D, Larson MG, Benjamin EJ, et al. Framingham Heart Study 100K Project: genome-

wide associations for blood pressure and arterial stiffness. BMC medical genetics. 2007;8 

Suppl 1:S3.

14.	� Diabetes Genetics Initiative of Broad Institute of H, Mit LU, Novartis Institutes of BioMedical 

R, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride 

levels. Science. Jun 1 2007;316(5829):1331-1336.

15.	� Kato N, Miyata T, Tabara Y, et al. High-density association study and nomination of 

susceptibility genes for hypertension in the Japanese National Project. Human molecular 

genetics. Feb 15 2008;17(4):617-627.

16.	� Wellcome Trust Case Control C. Genome-wide association study of 14,000 cases of seven 

common diseases and 3,000 shared controls. Nature. Jun 7 2007;447(7145):661-678.



46

Chapter 2.1

17.	� Sabatti C, Service SK, Hartikainen AL, et al. Genome-wide association analysis of metabolic 

traits in a birth cohort from a founder population. Nature genetics. Jan 2009;41(1):35-46.

18.	� Wang Y, O’Connell JR, McArdle PF, et al. From the Cover: Whole-genome association study 

identifies STK39 as a hypertension susceptibility gene. Proceedings of the National Academy 

of Sciences of the United States of America. Jan 6 2009;106(1):226-231.

19.	� Psaty BM, O’Donnell CJ, Gudnason V, et al. Cohorts for Heart and Aging Research in 

Genomic Epidemiology (CHARGE) Consortium: Design of prospective meta-analyses of 

genome-wide association studies from 5 cohorts. Circ Cardiovasc Genet. Feb 2009;2(1):73-80.

20.	� Newton-Cheh C, Johnson T, Gateva V, et al. Genome-wide association study identifies eight 

loci associated with blood pressure. Nature genetics. May 10 2009.

21.	� Servin B, Stephens M. Imputation-based analysis of association studies: candidate regions 

and quantitative traits. PLoS genetics. Jul 2007;3(7):e114.

22.	� Cui JS, Hopper JL, Harrap SB. Antihypertensive treatments obscure familial contributions to 

blood pressure variation. Hypertension. Feb 2003;41(2):207-210.

23.	� Senn S. Trying to be precise about vagueness. Stat Med. Mar 30 2007;26(7):1417-1430.

24.	� Johnson AD, Handsaker RE, Pulit SL, Nizzari MM, O’Donnell CJ, de Bakker PI. SNAP: a web-

based tool for identification and annotation of proxy SNPs using HapMap. Bioinformatics. 

Dec 15 2008;24(24):2938-2939.

25.	� Schadt EE, Molony C, Chudin E, et al. Mapping the genetic architecture of gene expression 

in human liver. PLoS biology. May 6 2008;6(5):e107.

26.	� Dixon AL, Liang L, Moffatt MF, et al. A genome-wide association study of global gene 

expression. Nature genetics. Oct 2007;39(10):1202-1207.

27.	� Pande J, Mallhi KK, Sawh A, Szewczyk MM, Simpson F, Grover AK. Aortic smooth muscle 

and endothelial plasma membrane Ca2+ pump isoforms are inhibited differently by the 

extracellular inhibitor caloxin 1b1. American journal of physiology. Cell physiology. May 

2006;290(5):C1341-1349.

28.	� Monteith GR, Kable EP, Kuo TH, Roufogalis BD. Elevated plasma membrane and 

sarcoplasmic reticulum Ca2+ pump mRNA levels in cultured aortic smooth muscle cells from 

spontaneously hypertensive rats. Biochemical and biophysical research communications. 

Jan 13 1997;230(2):344-346.

29.	� Sunyaev S, Ramensky V, Koch I, Lathe W, 3rd, Kondrashov AS, Bork P. Prediction of 

deleterious human alleles. Human molecular genetics. Mar 15 2001;10(6):591-597.

30.	� Hunt KA, Zhernakova A, Turner G, et al. Newly identified genetic risk variants for celiac 

disease related to the immune response. Nature genetics. Apr 2008;40(4):395-402.

31.	� Smyth DJ, Plagnol V, Walker NM, et al. Shared and distinct genetic variants in type 1 diabetes 

and celiac disease. N Engl J Med. Dec 25 2008;359(26):2767-2777.

32.	� Velazquez L, Cheng AM, Fleming HE, et al. Cytokine signaling and hematopoietic 

homeostasis are disrupted in Lnk-deficient mice. The Journal of experimental medicine. Jun 

17 2002;195(12):1599-1611.

33.	� Chen L, Davey Smith G, Harbord RM, Lewis SJ. Alcohol intake and blood pressure: a 

systematic review implementing a Mendelian randomization approach. PLoS medicine. Mar 

4 2008;5(3):e52.



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 47

GWA study of blood pressure: CHARGE consortium

34.	� Costa-Santos M, Kater CE, Auchus RJ, Brazilian Congenital Adrenal Hyperplasia Multicenter 

Study G. Two prevalent CYP17 mutations and genotype-phenotype correlations in 24 

Brazilian patients with 17-hydroxylase deficiency. The Journal of clinical endocrinology and 

metabolism. Jan 2004;89(1):49-60.

35.	� Yang J, Cui B, Sun S, et al. Phenotype-genotype correlation in eight Chinese 17alpha-

hydroxylase/17,20 lyase-deficiency patients with five novel mutations of CYP17A1 gene. The 

Journal of clinical endocrinology and metabolism. Sep 2006;91(9):3619-3625.

36.	� Antzelevitch C, Pollevick GD, Cordeiro JM, et al. Loss-of-function mutations in the cardiac 

calcium channel underlie a new clinical entity characterized by ST-segment elevation, short 

QT intervals, and sudden cardiac death. Circulation. Jan 30 2007;115(4):442-449.

37.	� Lao QZ, Kobrinsky E, Harry JB, Ravindran A, Soldatov NM. New Determinant for the 

CaVbeta2 subunit modulation of the CaV1.2 calcium channel. The Journal of biological 

chemistry. Jun 6 2008;283(23):15577-15588.

38.	� Postma AV, van de Meerakker JB, Mathijssen IB, et al. A gain-of-function TBX5 mutation is 

associated with atypical Holt-Oram syndrome and paroxysmal atrial fibrillation. Circulation 

research. Jun 6 2008;102(11):1433-1442.

39.	� Sayeski PP, Ali MS. The critical role of c-Src and the Shc/Grb2/ERK2 signaling pathway 

in angiotensin II-dependent VSMC proliferation. Experimental cell research. Jul 15 

2003;287(2):339-349.

40.	� Vogel V, Backer A, Heller J, Kramer HJ. The renal endothelin system in the Prague hypertensive 

rat, a new model of spontaneous hypertension. Clin Sci (Lond). Jul 1999;97(1):91-98.

41.	� Newton-Cheh C, Larson MG, Vasan RS, et al. Association of common variants in NPPA 

and NPPB with circulating natriuretic peptides and blood pressure. Nature genetics. Mar 

2009;41(3):348-353.

42.	� MacMahon S, Peto R, Cutler J, et al. Blood pressure, stroke, and coronary heart disease. 

Part 1, Prolonged differences in blood pressure: prospective observational studies corrected 

for the regression dilution bias. Lancet. Mar 31 1990;335(8692):765-774.

43.	� Moffatt MF, Kabesch M, Liang L, et al. Genetic variants regulating ORMDL3 expression 

contribute to the risk of childhood asthma. Nature. Jul 26 2007;448(7152):470-473.

44.	� Barrett JC, Hansoul S, Nicolae DL, et al. Genome-wide association defines more than 30 

distinct susceptibility loci for Crohn’s disease. Nature genetics. Aug 2008;40(8):955-962.

45.	� Emilsson V, Thorleifsson G, Zhang B, et al. Genetics of gene expression and its effect on 

disease. Nature. Mar 27 2008;452(7186):423-428.

 

 

 



48

Chapter 2.2

Genome-wide association of blood pressure: ICBP 

Based on 

Genetic variants in novel pathways influence blood pressure and cardiovascular disease risk. 

Nature. 

2011 Sep 11;478(7367):103-9. 



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 49

GWA study of blood pressure: ICBP

Abstract

Background

Blood pressure is a heritable trait1 influenced by several biological pathways and responsive to 

environmental stimuli. Over one billion people worldwide have hypertension (≥140 mmHg systolic 

blood pressure or ≥90 mmHg diastolic blood pressure)2. Even small increments in blood pressure 

are associated with an increased risk of cardiovascular events3.

Methods

We conducted a genome-wide association study of systolic and diastolic blood pressure using a 

multi-staged design in up to 200,000 individuals of European descent.

Results 

We identified sixteen novel loci: six of these loci contain genes previously known or suspected 

to regulate blood pressure (GUCY1A3–GUCY1B3, NPR3–c5orf23, ADM, FURIN–FES, GOSR2, 

GNAS–EDN3); the other ten provide new clues to blood pressure physiology. A genetic risk score 

based on 29 genome-wide significant variants was associated with hypertension, left ventricular 

wall thickness, stroke and coronary artery disease, but not kidney disease or kidney function. We 

also observed associations with blood pressure in East Asian, South Asian and African ancestry 

individuals.

Conclusions 

Our findings provide new insights into the genetics and biology of blood pressure, and suggest 

potential novel therapeutic pathways for cardiovascular disease prevention.
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Genetic approaches have advanced the understanding of biological pathways underlying inter-

individual variation in blood pressure. For example, studies of rare Mendelian blood pressure 

disorders have identified multiple defects in renal sodium handling pathways4. More recently two 

genome-wide association studies (GWAS), each of >25,000 individuals of European ancestry, 

identified 13 loci associated with systolic blood pressure (SBP), diastolic blood pressure (DBP) and 

hypertension5,6. We now report results of a new meta-analysis of GWAS data that includes staged 

follow-up genotyping to identify additional blood pressure loci.

Primary analyses evaluated associations between 2.5 million genotyped or imputed single 

nucleotide polymorphisms (SNPs) and SBP and DBP in 69,395 individuals of European ancestry 

from 29 studies. Following GWAS meta-analysis, we conducted a three-stage validation experiment 

that made efficient use of available genotyping resources, to follow up top signals in up to 133,661 

additional individuals of European descent. 

Twenty-nine independent SNPs at 28 loci were significantly associated with SBP, DBP, or both in 

the meta-analysis combining discovery and follow-up data (Fig. 1, Table 1). All 29 SNPs attained 

association P < 5 × 10-9, an order of magnitude beyond the standard genome-wide significance 

level for a single-stage experiment (Table 1).

Sixteen of these 29 associations were novel (Table 1). Two associations were near the FURIN and 

GOSR2 genes; prior targeted analyses of variants in these genes suggested they may be blood 

pressure loci7,8. At the CACNB2 locus we validated association for a previously reported 6 SNP, 

rs4373814, and detected a novel independent association for rs1813353 (pairwise r2 = 0.015 in 

HapMap CEU). Of our 13 previously reported associations5,6, only the association at PLCD3 was 

not supported by the current results. Some of the associations are in or near genes involved in 

pathways known to influence blood pressure (NPR3, GUCY1A3–GUCY1B3, ADM, GNAS–EDN3, 

NPPA–NPPB and CYP17A1). Twenty-two of the 28 loci did not contain genes that were a priori 

strong biological candidates.

As expected from prior blood pressure GWAS results, the effects of the novel variants on SBP 

and DBP were small (Fig. 1 and Table 1). For all variants, the observed directions of effects were 

concordant for SBP, DBP and hypertension (Fig. 1, Table 1). Among the genes at the genome-wide 

significant loci, only CYP17A1, previously implicated in Mendelian congenital adrenal hyperplasia 

and hypertension, is known to harbour rare variants that have large effects on blood pressure9.
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Figure 1. Genome-wide –log10 P-value plots.

Genome-wide –log10 P-value plots for systolic blood pressure (SBP: upper panel) and diastolic blood pressure 

(DBP: lower panel).  SNPs within loci reaching genome wide significance are labeled in red and lowest P-values 

of the initial genome-wide analysis and analysis including the replication data are labeled separately.  The dotted 

line indicates the genome-wide significance level adjusted for our sequential design (P=2.5 x 10-8).  
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We performed several analyses to identify potential causal alleles and mechanisms. First, we 

looked up the 29 genome-wide significant index SNPs and their close proxies (r2 > 0.8) among cis-

acting expression SNP (eSNP) results from multiple tissues (Supplementary Materials section 5). 

For 13/29 index SNPs, we found an association between nearby eSNP variants and the expression 

levels of at least one gene transcript (10-4 > P > 10-51). In five cases, the index blood pressure SNP 

and the best eSNP from a genome-wide survey were identical, highlighting potential mediators of 

the SNP–blood pressure associations.

Second, because changes in protein sequence are a priori strong functional candidates, we 

sought non-synonymous coding SNPs that were in high linkage disequilibrium (r2 > 0.8) with the 

29 index SNPs. We identified such SNPs at eight loci (Table 1). In addition we performed analyses 

testing for differences in genetic effect according to body mass index (BMI) or sex, and analyses 

of copy number variants, pathway enrichment and metabolomic data, but we did not find any 

statistically significant results.

We evaluated whether the blood pressure variants we identified in Europeans were associated 

with blood pressure in individuals of East Asian (N = 29,719), South Asian (N = 23,977) and African 

(N = 19,775) ancestries (Table 1). We found significant associations in individuals of East Asian 

ancestry for SNPs at nine loci and in individuals of South Asian ancestry for SNPs at six loci. The 

lack of significant association for individual SNPs may reflect small sample sizes, differences in 

allele frequencies or linkage disequilibrium patterns, imprecise imputation for some ancestries 

using existing reference samples, or a genuinely different underlying genetic architecture. Because 

of limited power to detect effects of individual variants in the smaller non-European samples, we 

created genetic risk scores for SBP and DBP incorporating all 29 blood pressure variants weighted 

according to effect sizes observed in the European samples. In each non-European ancestry 

group, risk scores were strongly associated with SBP (P = 1.1 × 10-40 in East Asian, P = 2.9 × 

10-13 in South Asian, P = 9.8 × 10-4 in African ancestry individuals) and DBP (P = 2.9 × 10-48, P 

= 9.5 × 10-15 and P = 5.3 × 10-5, respectively).
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We also created a genetic risk score to assess association of the variants in aggregate with 

hypertension and with clinical measures of hypertensive complications including left ventricular 

mass, left ventricular wall thickness, incident heart failure, incident and prevalent stroke, prevalent 

coronary artery disease (CAD), kidney disease and measures of kidney function, using results 

from other GWAS consortia (Table 2). The risk score was weighted using the average of SBP 

and DBP effects for the 29 SNPs. In an independent sample of 23,294 women10, an increase of 

one standard deviation in the genetic risk score was associated with a 21% increase in the odds 

of hypertension (95% confidence interval 19–28%; Table 2). Among individuals in the top decile 

of the risk score, the prevalence of hypertension was 29% compared with 16% in the bottom 

decile (odds ratio 2.09, 95% confidence interval 1.86–2.36). Similar results were observed in 

an independent hypertension case-control sample (Table 2). In our study, individuals in the top 

compared to bottom quintiles of genetic risk score differed by 4.6 mmHg SBP and 3.0 mmHg 

DBP, differences that approach population-averaged blood pressure treatment effects for a single 

antihypertensive agent11. Epidemiological data have shown that differences in SBP and DBP of 

this magnitude, across the population range of blood pressure, are associated with an increase in 

cardiovascular disease risk3. Consistent with this and in line with findings from randomized trials 

of blood-pressure-lowering medication in hypertensive patients12,13, the genetic risk score was 

positively associated with left ventricular wall thickness (P = 6.0 × 10-6), occurrence of stroke (P = 

3.3 × 10-5) and CAD (P = 8.1 × 10-29). The same genetic risk score was not, however, significantly 

associated with chronic kidney disease or measures of kidney function, even though these renal 

outcomes were available in a similar sample size as for the other outcomes (Table 2). The absence 

of association with kidney phenotypes could be explained by a weaker causal relationship between 

blood pressure and kidney phenotypes than with CAD and stroke. This finding is consistent with 

the mismatch between observational data that show a positive association of blood pressure 

with kidney disease, and clinical trial data that show inconsistent evidence of a benefit from blood 

pressure lowering on kidney disease prevention in patients with hypertension14. Thus, several lines 

of evidence converge to indicate that blood pressure elevation may in part be a consequence 

rather than a cause of sub-clinical kidney disease.

 



54

Chapter 2.2

Table 1. Summary association results for 29 blood pressure SNPs

Locus Index SNP Chr Position Coded 

allele

Coded 

allele freq.

SBP DBP HTN

Beta P-value Beta P-value Beta P-value

Novel genome-wide significant variants identified

MOV10 rs2932538 1 113,018,066 G 0.75 0.388 1.2*10-9 0.240 9.9*10-10 0.049 2.9*10-7

SLC4A7 rs13082711 3 27,512,913 T 0.78 -0.315 1.5*10-6 -0.238 3.8*10-9 -0.035 3.6*10-4

MECOM rs419076 3 170,583,580 T 0.47 0.409 1.8*10-13 0.241 2.1*10-12 0.031 3.1*10-4

SLC39A8 rs13107325 4 103,407,732 T 0.50 -0.981 3.3*10-14 -0.684 2.3*10-17 -0.105 4.9*10-7

GUCY1A3-GUCY1B3 rs13139571 4 156,864,963 C 0.76 0.321 1.2*10-6 0.260 2.2*10-10 0.042 2.5*10-5

NPR3-C5orf23 rs1173771 5 32,850,785 G 0.60 0.504 1.8*10-16 0.261 9.1*10-12 0.062 3.2*10-10

EBF1 rs11953630 5 157,777,980 T 0.37 -0.412 3.0*10-11 -0.281 3.8*10-13 -0.052 1.7*10-7

HFE rs1799945 6 26,199,158 G 0.14 0.627 7.7*10-12 0.457 1.5*10-15 0.095 1.8*10-10

BAT2-BAT5 rs805303 6 31,724,345 G 0.61 0.376 1.5*10-11 0.228 3.0*10-11 0.054 1.1*10-10

CACNB2(3’) rs1813353 10 18,747,454 T 0.68 0.569 2.6*10-12 0.415 2.3*10-15 0.078 6.2*10-10

PLCE1 rs932764 10 95,885,930 G 0.44 0.484 7.1*10-16 0.185 8.1*10-7 0.055 9.4*10-9

FLJ32810-TMEM133 rs633185 11 100,098,748 G 0.28 -0.565 1.2*10-17 -0.328 2.0*10-15 -0.070 5.4*10-11

ADM rs7129220 11 10,307,114 G 0.89 -0.619 3.0*10-12 -0.299 6.4*10-8 -0.045 1.1*10-3

FES rs2521501 15 89,238,392 T 0.31 0.650 5.2*10-19 0.359 1.9*10-15 0.059 7.0*10-7

GOSR2 rs17608766 17 42,368,270 T 0.86 -0.556 1.1*10-10 -0.129 0.017 -0.025 0.080

JAG1 rs1327235 20 10,917,030 G 0.46 0.340 1.9*10-8 0.302 1.4*10-15 0.034 4.6*10-4

GNAS-EDN3 rs6015450 20 57,184,512 G 0.12 0.896 3.9*10-23 0.557 5.6*10-23 0.110 4.2*10-14

Validated loci that were reported previously

MTHFR-NPPB rs17367504 1 11,785,365 G 0.15 -0.547 3.6*10-19 -0.903 8.7*10-22 -0.103 2.3*10-10

ULK4 rs3774372 3 41,852,418 T 0.83 -0.067 0.40 -0.367 9.0*10-14 -0.017 0.18

FGF5 rs1458038 4 81,383,747 T 0.29 0.457 8.5*10-25 0.706 1.5*10-23 0.072 1.9*10-7

CACNB2(5’) rs4373814 10 18,459,978 G 0.55 -0.373 4.8*10-11 -0.218 4.4*10-10 -0.046 8.5*10-8

C10orf107 rs4590817 10 63,137,559 G 0.84 0.419 1.3*10-12 0.646 4.0*10-12 0.096 9.8*10-9

CYP17A1-NT5C2 rs11191548 10 104,836,168 T 0.91 0.464 9.4*10-13 1.095 6.9*10-26 0.097 1.4*10-5

PLEKHA7 rs381815 11 16,858,844 T 0.26 0.349 5.3*10-10 0.575 5.3*10-11 0.062 3.4*10-6

ATP2B1 rs17249754 12 88,584,717 G 0.84 0.522 1.2*10-14 0.928 1.8*10-18 0.126 1.1*10-14

SH2B3 rs3184504 12 110,368,991 T 0.47 0.448 3.6*10-25 0.598 3.8*10-18 0.056 2.6*10-6

TBX5-TBX3 rs10850411 12 113,872,179 T 0.70 0.354 5.4*10-8 0.253 5.4*10-10 0.045 5.2*10-6

CYP1A1-ULK3 rs1378942 15 72,864,420 C 0.35 0.416 2.7*10-26 0.613 5.7*10-23 0.073 1.0*10-8

ZNF652 rs12940887 17 44,757,806 T 0.38 0.362 1.8*10-10 0.271 2.3*10-14 0.046 1.2*10-7

Estimates of SBP and DBP effects (beta) are in mmHg per coded allele; HTN effects (beta) are in ln (odds) 

units per coded allele.
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Table 1. Summary association results for 29 blood pressure SNPs

Locus Index SNP Chr Position Coded 

allele

Coded 

allele freq.

SBP DBP HTN

Beta P-value Beta P-value Beta P-value

Novel genome-wide significant variants identified

MOV10 rs2932538 1 113,018,066 G 0.75 0.388 1.2*10-9 0.240 9.9*10-10 0.049 2.9*10-7

SLC4A7 rs13082711 3 27,512,913 T 0.78 -0.315 1.5*10-6 -0.238 3.8*10-9 -0.035 3.6*10-4

MECOM rs419076 3 170,583,580 T 0.47 0.409 1.8*10-13 0.241 2.1*10-12 0.031 3.1*10-4

SLC39A8 rs13107325 4 103,407,732 T 0.50 -0.981 3.3*10-14 -0.684 2.3*10-17 -0.105 4.9*10-7

GUCY1A3-GUCY1B3 rs13139571 4 156,864,963 C 0.76 0.321 1.2*10-6 0.260 2.2*10-10 0.042 2.5*10-5

NPR3-C5orf23 rs1173771 5 32,850,785 G 0.60 0.504 1.8*10-16 0.261 9.1*10-12 0.062 3.2*10-10

EBF1 rs11953630 5 157,777,980 T 0.37 -0.412 3.0*10-11 -0.281 3.8*10-13 -0.052 1.7*10-7

HFE rs1799945 6 26,199,158 G 0.14 0.627 7.7*10-12 0.457 1.5*10-15 0.095 1.8*10-10

BAT2-BAT5 rs805303 6 31,724,345 G 0.61 0.376 1.5*10-11 0.228 3.0*10-11 0.054 1.1*10-10

CACNB2(3’) rs1813353 10 18,747,454 T 0.68 0.569 2.6*10-12 0.415 2.3*10-15 0.078 6.2*10-10

PLCE1 rs932764 10 95,885,930 G 0.44 0.484 7.1*10-16 0.185 8.1*10-7 0.055 9.4*10-9

FLJ32810-TMEM133 rs633185 11 100,098,748 G 0.28 -0.565 1.2*10-17 -0.328 2.0*10-15 -0.070 5.4*10-11

ADM rs7129220 11 10,307,114 G 0.89 -0.619 3.0*10-12 -0.299 6.4*10-8 -0.045 1.1*10-3

FES rs2521501 15 89,238,392 T 0.31 0.650 5.2*10-19 0.359 1.9*10-15 0.059 7.0*10-7

GOSR2 rs17608766 17 42,368,270 T 0.86 -0.556 1.1*10-10 -0.129 0.017 -0.025 0.080

JAG1 rs1327235 20 10,917,030 G 0.46 0.340 1.9*10-8 0.302 1.4*10-15 0.034 4.6*10-4

GNAS-EDN3 rs6015450 20 57,184,512 G 0.12 0.896 3.9*10-23 0.557 5.6*10-23 0.110 4.2*10-14

Validated loci that were reported previously

MTHFR-NPPB rs17367504 1 11,785,365 G 0.15 -0.547 3.6*10-19 -0.903 8.7*10-22 -0.103 2.3*10-10

ULK4 rs3774372 3 41,852,418 T 0.83 -0.067 0.40 -0.367 9.0*10-14 -0.017 0.18

FGF5 rs1458038 4 81,383,747 T 0.29 0.457 8.5*10-25 0.706 1.5*10-23 0.072 1.9*10-7

CACNB2(5’) rs4373814 10 18,459,978 G 0.55 -0.373 4.8*10-11 -0.218 4.4*10-10 -0.046 8.5*10-8

C10orf107 rs4590817 10 63,137,559 G 0.84 0.419 1.3*10-12 0.646 4.0*10-12 0.096 9.8*10-9

CYP17A1-NT5C2 rs11191548 10 104,836,168 T 0.91 0.464 9.4*10-13 1.095 6.9*10-26 0.097 1.4*10-5

PLEKHA7 rs381815 11 16,858,844 T 0.26 0.349 5.3*10-10 0.575 5.3*10-11 0.062 3.4*10-6

ATP2B1 rs17249754 12 88,584,717 G 0.84 0.522 1.2*10-14 0.928 1.8*10-18 0.126 1.1*10-14

SH2B3 rs3184504 12 110,368,991 T 0.47 0.448 3.6*10-25 0.598 3.8*10-18 0.056 2.6*10-6

TBX5-TBX3 rs10850411 12 113,872,179 T 0.70 0.354 5.4*10-8 0.253 5.4*10-10 0.045 5.2*10-6

CYP1A1-ULK3 rs1378942 15 72,864,420 C 0.35 0.416 2.7*10-26 0.613 5.7*10-23 0.073 1.0*10-8

ZNF652 rs12940887 17 44,757,806 T 0.38 0.362 1.8*10-10 0.271 2.3*10-14 0.046 1.2*10-7

Estimates of SBP and DBP effects (beta) are in mmHg per coded allele; HTN effects (beta) are in ln (odds) 

units per coded allele.
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Table 2. Genetic risk score and cardiovascular outcome association results

Phenotype Source Effect SE  P-value # Contrast top vs bottom N case/control Reference (if 

available)

 (per SD of genetic risk score)  SNPs quintiles deciles

Blood pressure phenotypes (for self reported BP in “healthy” female health professionals)

SBP [mmHg] WGHS 1.645 0.098 (a) 6.5x10-63 29 4.61 5.77 (a) NA 1

DBP [mmHg] WGHS 1.057 0.067 (a) 8.4x10-57 29 2.96 3.71 (a) NA 1

prevalent hypertension WGHS 0.211 0.018 (b) 3.1x10-33 29 1.80 2.09 (b) 5,018/18,276 1

Dichotomous endpoints 

Incident heart failure CHARGE-HF 0.035 0.021 (c) 0.10 29 1.10 1.13 (c) 2,526/18,400 2

Incident stroke NEURO-CHARGE 0.103 0.028 (c) 0.0002 28 1.34 1.44 (c) 1,544/18,058 3

Prevalent stroke UK-US Stroke 

Collaborative 

Group(SCG)

0.075 0.037 (b) 0.05 29 1.23 1.30 (b) 1,473/  1,482  

Stroke (combined, 

incident and prevalent)

CHARGE & SCG NA NA NA 3.3x10-5 NA NA NA NA 3,017/19,540  

Prevalent CAD CARDIoGRAM 0.092 0.010 (b) 1.6x10-19 28 1.29 1.38 (b) 22,233/64,726  

Prevalent CAD C4D ProCARDIS 0.132 0.022 (b) 2.2x10-9 29 1.45 1.59 (b) 5,720/  4,381  

Prevalent CAD C4D HPS 0.083 0.027 (b) 0.002 29 1.26 1.34 (b) 2,704/  2,804  

Prevalent CAD (combined) CARDIoGRAM & 

C4D

0.100 0.009 (b) 8.1x10-29 29 1.32 1.42 (b) 30,657/71,911  

Prevalent chronic kidney 

disease

CKDGen 0.014 0.015 (b) 0.35 29 1.04 1.05 (b) 5,807/61,286 4

Prevalent 

microalbuminuria

CKDGen 0.008 0.019 (b) 0.68 29 1.02 1.03 (b) 3,698/27,882  

Continuous measures of target organ damage 

Left ventricular mass [g] EchoGen 0.822 0.317 (a) 0.01 29 2.30 2.89 (a) NA 5

Left ventricular wall 

thickness[mm]

EchoGen 0.009 0.002 (a) 6.0x10-6 29 0.03 0.03 (a) NA 5

Serum creatinine KidneyGen -0.001 0.001 (d) 0.24 29 1.00 1.00 (d) NA 6

eGFR (4 parameter MDRD 

equation)

CKDGen -0.0001 0.0009 (d) 0.93 29 1.00 1.00 (d) NA 4

Urinary albumin/creatinine 

ratio

CKDGen 0.005 0.007 (d) 0.43 29 1.01 1.02 (d) NA  

(a) �units are the unit of phenotypic measurement, either per SD of genetic risk score, or as a difference between 

top/bottom quintiles or deciles.

(b) �units are ln(odds) per SD of genetic risk score, or odds ratio between top/bottom quintiles or deciles.
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Table 2. Genetic risk score and cardiovascular outcome association results

Phenotype Source Effect SE  P-value # Contrast top vs bottom N case/control Reference (if 

available)

 (per SD of genetic risk score)  SNPs quintiles deciles

Blood pressure phenotypes (for self reported BP in “healthy” female health professionals)

SBP [mmHg] WGHS 1.645 0.098 (a) 6.5x10-63 29 4.61 5.77 (a) NA 1

DBP [mmHg] WGHS 1.057 0.067 (a) 8.4x10-57 29 2.96 3.71 (a) NA 1

prevalent hypertension WGHS 0.211 0.018 (b) 3.1x10-33 29 1.80 2.09 (b) 5,018/18,276 1

Dichotomous endpoints 

Incident heart failure CHARGE-HF 0.035 0.021 (c) 0.10 29 1.10 1.13 (c) 2,526/18,400 2

Incident stroke NEURO-CHARGE 0.103 0.028 (c) 0.0002 28 1.34 1.44 (c) 1,544/18,058 3

Prevalent stroke UK-US Stroke 

Collaborative 

Group(SCG)

0.075 0.037 (b) 0.05 29 1.23 1.30 (b) 1,473/  1,482  

Stroke (combined, 

incident and prevalent)

CHARGE & SCG NA NA NA 3.3x10-5 NA NA NA NA 3,017/19,540  

Prevalent CAD CARDIoGRAM 0.092 0.010 (b) 1.6x10-19 28 1.29 1.38 (b) 22,233/64,726  

Prevalent CAD C4D ProCARDIS 0.132 0.022 (b) 2.2x10-9 29 1.45 1.59 (b) 5,720/  4,381  

Prevalent CAD C4D HPS 0.083 0.027 (b) 0.002 29 1.26 1.34 (b) 2,704/  2,804  

Prevalent CAD (combined) CARDIoGRAM & 

C4D

0.100 0.009 (b) 8.1x10-29 29 1.32 1.42 (b) 30,657/71,911  

Prevalent chronic kidney 

disease

CKDGen 0.014 0.015 (b) 0.35 29 1.04 1.05 (b) 5,807/61,286 4

Prevalent 

microalbuminuria

CKDGen 0.008 0.019 (b) 0.68 29 1.02 1.03 (b) 3,698/27,882  

Continuous measures of target organ damage 

Left ventricular mass [g] EchoGen 0.822 0.317 (a) 0.01 29 2.30 2.89 (a) NA 5

Left ventricular wall 

thickness[mm]

EchoGen 0.009 0.002 (a) 6.0x10-6 29 0.03 0.03 (a) NA 5

Serum creatinine KidneyGen -0.001 0.001 (d) 0.24 29 1.00 1.00 (d) NA 6

eGFR (4 parameter MDRD 

equation)

CKDGen -0.0001 0.0009 (d) 0.93 29 1.00 1.00 (d) NA 4

Urinary albumin/creatinine 

ratio

CKDGen 0.005 0.007 (d) 0.43 29 1.01 1.02 (d) NA  

(a) �units are the unit of phenotypic measurement, either per SD of genetic risk score, or as a difference between 

top/bottom quintiles or deciles.

(b) �units are ln(odds) per SD of genetic risk score, or odds ratio between top/bottom quintiles or deciles.

(c) �units are ln(hazard ratio) per SD of genetic risk score, or hazard ratio between top/bottom quintiles or deciles.

(d) �units are ln(phenotype) per SD of genetic risk score, or phenotypic ratio between top/bottom quintiles or 

deciles.
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 Our discovery meta-analysis suggests an excess of modestly significant (10-5 < P < 10-2) 

associations probably arising from common blood pressure variants of small effect. By dividing 

our principal GWAS data set into non-overlapping discovery (N ≈ 56,000) and validation (N ≈ 

14,000) subsets, we found robust evidence for the existence of such undetected common variants 

(Supplementary Fig. 5 and Supplementary Materials section 12). We estimate15 that there are 116 

(95% confidence interval 57–174) independent blood pressure variants with effect sizes similar to 

those reported here, which collectively can explain ~2.2% of the phenotypic variance for SBP and 

DBP, compared with 0.9% explained by the 29 associations discovered thus far.

Most of the 28 blood pressure loci harbour multiple genes and although substantial research is 

required to identify the specific genes and variants responsible for these associations, several loci 

contain highly plausible biological candidates. The NPPA and NPPB genes at the MTHFR–NPPB 

locus encode precursors for atrial- and B-type natriuretic peptides (ANP, BNP), and previous work 

has identified SNPs—modestly correlated with our index SNP at this locus—which are associated 

with plasma ANP, BNP and blood pressure16. We found the index SNP at this locus was associated 

with opposite effects on blood pressure and on ANP/BNP levels, consistent with a model in which 

the variants act through increased ANP/BNP production to lower blood pressure16.

Two other loci identified in the current study harbour genes involved in natriuretic peptide and related 

nitric oxide signalling pathways17,18, both of which act to regulate cyclic guanosine monophosphate. 

The first locus contains NPR3, which encodes the natriuretic peptide clearance receptor (NPR-C). 

NPR3 knockout mice exhibit reduced clearance of circulating natriuretic peptides and lower 

blood pressure19. The second locus includes GUCY1A3 and GUCY1B3, encoding the alpha and 

beta subunits of soluble guanylate cyclase; knockout of either gene in murine models results in 

hypertension20.

Another locus contains ADM—encoding adrenomedullin—which has natriuretic, vasodilatory and 

blood-pressure-lowering properties21. At the GNAS–EDN3 locus, ZNF831 is closest to the index 

SNP, but GNAS and EDN3 are two nearby compelling biological candidates.

We identified two loci with plausible connections to blood pressure via genes implicated in renal 

physiology or kidney disease. At the first locus, SLC4A7 is an electro-neutral sodium bicarbonate 

co-transporter expressed in the nephron and in vascular smooth muscle22. At the second locus, 

PLCE1 (phospholipase-C-epsilon-1 isoform) is important for normal podocyte development in the 

glomerulus; sequence variation in PLCE1 has been implicated in familial nephrotic syndromes and 

end-stage kidney disease23.
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Missense variants in two genes involved in metal ion transport were associated with blood 

pressure in our study. The first encodes a His/Asp change at amino acid 63 (H63D) in HFE and is a 

low-penetrance allele for hereditary hemochromatosis24. The second is an Ala/Thr polymorphism 

located in exon 7 of SLC39A8, which encodes a zinc transporter that also transports cadmium 

and manganese25. The same allele of SLC39A8 associated with blood pressure in our study has 

recently been associated with high-density lipoprotein cholesterol levels26 and BMI27.

We have shown that 29 independent genetic variants influence blood pressure in people of 

European ancestry. The variants reside in 28 loci, 16 of which were novel, and we confirmed 

association of several of them in individuals of non-European ancestry. A risk score derived from 

the 29 variants was significantly associated with blood-pressure-related organ damage and 

clinical cardiovascular disease, but not kidney disease. These loci improve our understanding of 

the genetic architecture of blood pressure, provide new biological insights into blood pressure 

control and may identify novel targets for the treatment of hypertension and the prevention of 

cardiovascular disease.
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HSD3B1 gene with aldosterone production 

and blood pressure

Based on 

Expression and gene variation studies deny association of human 3ß-hydroxysteroid 

dehydrogenase type 1 gene (HSD3B1) with aldosterone production or blood pressure. 

Submitted  American Journal of Hypertension
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Abstract

Background

Recent evidence suggests that the type I 3ß-hydroxysteroid dehydrogenase, a steroidogenic 

enzyme encoded by the HSD3B1 gene, could be involved in aldosterone production and that 

genetic variation in HSD3B1 is associated with blood pressure. These findings challenge the long-

standing hypothesis that all adrenocortical steroidogenesis is executed by the type II iso-enzyme, 

encoded by HSD3B2. 

Methods

Expression of HSD3B1 and HSD3B2 was investigated in various adrenocortical tissues (n=15) and 

in primary adrenal cell cultures (n=5) following stimulation with adrenocorticotropin and angiotensin 

II. Six tagging SNPs within the HSD3B1 gene were studied for association with blood pressure and 

hypertension in a meta-analysis of four Dutch cohorts (n=11,192). 

Results

HSD3B1 expression was minimal or absent in adrenocortical tissues, including 6 aldosterone-

producing adenomas. In contrast to the ubiquitously expressed HSD3B2 mRNA, HSD3B1 levels 

were not stimulated by adrenocorticotropin or angiotensin II. No variants in the HSD3B1 gene were 

associated with blood pressure or the occurrence of hypertension. 

Conclusions

We found no evidence to support confirmation that HSD3B1 is involved in aldosterone synthesis 

in the human adrenal cortex or that genetic variation in HSD3B1 affects blood pressure or 

hypertension, favoring the hypothesis that all adrenocortical steroidogenesis is primarily dependent 

on the type II 3ß-hydroxysteroid dehydrogenase.
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Introduction

The renin-angiotensin-aldosterone system (RAAS) is an important regulator of blood pressure. 

Angiotensin II (Ang II) binds to its type 1 receptor in the zona glomerulosa (ZG) of the adrenal 

cortex, leading to the stimulation of aldosterone production.1 The mineralocorticoid aldosterone 

controls blood pressure primarily by increasing sodium reabsorption in the distal convoluted tube 

and collecting duct of the nephron.2

Similar to other steroid hormones, aldosterone is produced through sequential  enzymatic 

reactions by several steroidogenic enzymes.3 One of the essential conversions for all active 

steroid hormones is the formation of progesterone from pregnenolone, which is realized by the 

3β-hydroxysteroid dehydrogenase (3ß-HSD) / 5- 4 isomerase enzymes.  

The human genome contains two 3ß-HSD enzymes that share 94% sequence homology: 

type I (HSD3B1) and type II (HSD3B2).4 The type II enzyme was considered responsible for all 

adrenocortical and gonadal steroid production, whereas HSD3B1 was thought to be expressed in 

the placenta and in peripheral tissues, but not in the adrenal cortex.5 However, recent developments 

have indicated that the type I 3ß-HSD might be the enzyme leading to aldosterone formation in 

the ZG. First, it was shown that increased expression of type VI 3ß-HSD caused hypertension in 

circadian clock-deficient Cry-null mice through stimulated production of aldosterone in the murine 

ZG.6 Murine Hsd3b6 was linked through sequence homology to human HSD3B1, the expression 

of which was subsequently shown to be localized in the human ZG. HSD3B2 expression on the 

other hand was relatively low in ZG cells.6 These findings were underpinned by a recent study 

revealing enriched expression of both HSD3B1 and HSD3B2 in aldosterone-producing adenomas 

compared to non-tumorous sections and adrenal incidentalomas.7

Secondly, common variants and mutations in HSD3B1 have been associated with blood pressure 

increase, essential hypertension and primary hyperaldosteronism in humans.7-10 Although these 

genetic studies were all performed in relatively small groups of hypertensive subjects, these findings 

suggested that HSD3B1 instead of HSD3B2 is responsible for mineralocorticoid production. 

In order to investigate whether HSD3B1 plays an important role in aldosterone production in 

the human ZG, we studied expression levels of both 3ß-HSD enzymes in human adrenocortical 

tissues using specific assays designed for the two iso-enzymes as well as genetic associations 

between HSD3B1 and blood pressure in large study cohorts of Caucasian origin.
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Methods

Study design

This study is a combination of data collected in vitro and population based data of four cohort 

studies, as described below. The in vitro experiments were used for the expression analyses of 

HSD3B1 and HSD3B2 in various adrenocortical tissues. The population-based data were used for 

genetic association analyses.

RNA analysis

Patient material

Tissue samples were collected from patients who underwent adrenalectomy at the Erasmus 

Medical Center, between 1994 and 2009. Samples from normal adrenal glands were obtained 

from radical nephrectomies due to renal cell carcinoma (n=9). Adrenocortical tumor samples 

were collected from patients after adrenalectomy because of Conn’s syndrome (n=7), Cushing’s 

syndrome (n=2) or suspicion of pheochromocytoma (n=1). For measurement of RNA representative 

tissue samples were snap-frozen and stored at -80 °C until further processing. For primary culture 

purposes, adrenal tissues were taken up in DMEM-F12 culture medium containing 5% fetal calf 

serum (FCS, Invitrogen, Carlsbad, CA, USA). 

This study was approved by the Medical Ethical Committee of the Erasmus Medical Center and 

informed consent was obtained from all patients.

Primary culture

Isolated adrenocortical cells were obtained by treating the tissue samples with type I collagenase 

(Sigma-Aldrich, St. Louis, MO, USA) and removing debris by centrifugation through a Ficoll 

gradient.11 Cell viability and type were checked by microscopical evaluation with trypan blue. Lipid-

laden cells were identified as adrenocortical cells and plated at a density of 100.000 cells per well 

in DMEM-F12 containing 5% FCS and allowed to attach overnight. The next day medium was 

changed to serum free and 24 hours later cells were incubated with vehicle, 10 ng/mL ACTH1-24 

(Novartis, Basel, Switzerland) or 100 nmol/L Ang II (Sigma) using 4 wells per treatment. After 48 

hours of incubation the supernatant was removed from the cells and plates were frozen on dry ice 

and stored at -80°C.
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Steroidogenic enzyme measurement

Total RNA was isolated from frozen tumor tissue and plated cells using Trizol reagent (Invitrogen). 

Subsequently, reverse transcription reactions were performed as previously described.12 Twenty 

ng of RNA was used in duplicate in quantitative polymerase chain reaction (qPCR) for HPRT1, 

HSD3B1, HSD3B2, CYP11B1 and CYP11B2. Primer and dual-labeled probe sequences and qPCR 

have been reported previously.13 Assays displayed no cross-reactivity with the homologous DNA 

sequences in related genes. One probe was used for both 3ß-HSD enzymes, whereas individual 

primers were manufactured for each gene giving rise to HSD3B1- and HSD3B2-specific PCR 

products of differing sizes (151 and 274 base pairs, respectively). Positive controls consisted of 

normal adrenal gland (CYP11B1 and HSD3B2), Conn adenoma (CYP11B2) and placenta (HSD3B1) 

and yielded threshold cycles (Ct) below 25.

Genetic analysis

Study populations

The Rotterdam Study I (RS-I), Rotterdam Study II (RS-II) and Rotterdam Study III (RS-III) are 

prospective population-based cohort studies. The RS-I comprises 7,983 subjects aged 55 years or 

older. Participants completed an interview at home and at the research center, where participants 

were subsequently examined. Baseline data were collected between 1990 and 1993. In 1999, 

inhabitants who turned 55 years of age or moved into the study district since the start of the study 

were invited to participate in an extension of the Rotterdam Study (RS-II), 3,011 participated. In 

2006 a further extension of the cohort was initiated in which 3,932 subjects were included (RS-III), 

aged 45 years and older, living in the Ommoord district. The rationale and design of the RS have 

been described in detail elsewhere.14

The Erasmus Rucphen Family (ERF) Study is a large family-based cohort study, including over 

3,000 participants descending from 22 couples living in the Rucphen region, the Netherlands, 

in the 19th century. The rationale and design of the ERF Study have been described in detail 

elsewhere.15,16 All descendants were invited to visit the regional clinical research center where they 

were examined and a fasting blood sample was drawn. All participants filled out a questionnaire on 

risk factors. The participants included in these analyses consisted of the first series of participants. 

The Medical Ethics Committee of Erasmus Medical Center approved the studies and written 

consent was obtained from all participants.



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 67

HSD3B1 gene with aldosterone production and blood pressure

Genotyping

All RS participants with available DNA were genotyped using Illumina Infinium II HumanHap 

BeadChips (RS-I and RS-II) or using Illumina Human 610 Quad array (RS-III) at the Department 

of Internal Medicine, Erasmus Medical Center following manufacturer’s protocols. Participants 

with call rate < 97.5%, excess autosomal heterozygosity, sex mismatch, or outlying identity-by-

state clustering estimates were excluded. After quality control 5,974 RS-I participants, 2,157 RS-II 

participants and 2,082 RS-III participants were included. Of these, 4,742 RS-I participants, 1,760 

RS-II participants and 2,072 RS-III participants had successful blood pressure measurements.

In ERF, all DNA samples were genotyped on four different platforms (Illumina 318K, Illumina 370K 

and Affymetrix 250K, Illumina610K), which were then merged and imputed to 2.5 million SNPs 

hapmap using build 36 HapMap (release 22) CEU populations as a reference cohort. After quality 

control, 2618 participants with genotyping and blood pressure measurements were included for 

these analyses.

TagSNP selection was based on linkage disequilibrium (r2>0.8) by using the international HapMap 

Project.17 (http://www.hapmap.org). 

Blood pressure measurements

Two seated blood pressure measurements were obtained of the right brachial artery with a random 

zero sphygmomanometer for RS-I and RS-II subjects and with an automated device (OMRON M17; 

OMRON healthcare Inc., Bannockburn, Illinois, USA) for RS-III and ERF subjects. The subject had 

been seated for at least five minutes. Systolic blood pressure (SBP) and diastolic blood pressure 

(DBP) were obtained and the averages of these two measurements were used for analysis. For 

participants who were taking anti-hypertensive medication we added 10 mmHg to observed SBP 

values and 5 mmHg to DBP values. Hypertension was defined as SBP≥140 or DBP≥90 mmHg or 

the use of antihypertensive medication at the time of assessment.

Statistical analyses

The mRNA levels were quantified by calculating expression relative to housekeeping gene HPRT1 

using the delta-Ct method. Differences between groups of tissues were analyzed by Kruskal-

Wallis test and post-hoc Dunn’s multiple Comparison test. Effects of incubations were analyzed 

after log transformation using Student’s t-test with Bonferroni correction. Statistical significance 

was assumed at P<0.05.

Individual SNP analyses were conducted within each cohort using an additive genetic model. 

Regression models were fitted for systolic, diastolic blood pressure (separately) and hypertension, 

in a raw model and a model adjusting for age, age2, sex and body mass index. Within study 

associations were combined by using an inverse-weighted variance meta-analysis. A threshold 

of P<0.008 was used to indicate statistical significance for genetic testing to correct for multiple 

testing with Bonferroni method (0.05/6). GenABEL was used for individual SNP analyses. METAL 

was used for meta-analyses.
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Results

mRNA studies

HSD3B expression in adrenal tissues

Patient tissues were divided into 3 groups: normal whole adrenal glands (n=6), non-aldosterone 

secreting adenomas (1 non-functional, 2 cortisol-secreting) and aldosterone-secreting adenomas 

(n=6). Expression of both 3ß-HSD types, HSD3B1 and HSD3B2, as well as the enzymes responsible 

for the final conversion into cortisol (11ß-hydroxylase) and aldosterone (aldosterone synthase), 

encoded by CYP11B1 and CYP11B2 respectively, were studied (Figure 1). HSD3B1 expression 

was positive in 4 normal adrenal glands and one Conn adenoma, although at low levels (Ct range: 

34.8-38.4). Moreover, expression of HSD3B1 was not increased in Conn adenomas compared 

to normal adrenals or non-aldosterone-producing adenomas. HSD3B2 mRNA was positive in all 

tissues except for one Conn adenoma, which was negative for both 3ß-HSD enzymes. CYP11B1 

was highly expressed in all tissues studied, whereas CYP11B2 was most abundantly but not 

exclusively expressed in the Conn adenomas. Conn adenomas harbored a significantly higher 

expression of CYP11B2 compared to non-Conn adenomas (P=0.011). HSD3B1 expression levels 

were not associated with other steroidogenic enzyme levels, age, sex or tumor size. 

Figure 1: Quantitative analysis of enzymes deemed responsible for aldosterone (HSD3B1 and 

CYP11B2) and for cortisol production (HSD3B2 and CYP11B1) in normal adrenal glands (Nl), non-aldosterone 

secreting adrenocortical adenomas (non-Conn) or Conn adenomas. 

* P<0.05



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 69

HSD3B1 gene with aldosterone production and blood pressure

Primary adrenal cell cultures

Basal expression of HSD3B1 was present in two out of three primary cultures of normal adrenals 

and in both cultures of Conn adenomas. HSD3B2 expression was positive in all samples studied 

and more abundant than HSD3B1 expression: 3231±2267-fold (mean±SEM) higher expression in 

normal adrenals and 79±38-fold higher in Conn adenomas. Incubation with ACTH or Ang II did 

not increase HSD3B1 expression in normal adrenal glands or Conn adenomas (P>0.05, Figure 

2). In contrast, both ACTH and Ang II potently stimulated the expression of the steroidogenic 

enzymes HSD3B2 (71±43-fold, P=0.043 and 25±10-fold, P=0.020, respectively) and CYP11B1 

(39±24-fold, P=0.032 and 6.5±2,1-fold, P=0.027, respectively)in primary cultures of adrenocortical 

cells (Figure 2). Ang II also potently increased the expression of CYP11B2 in cells derived from 

the Conn adenomas, although the interindividual responses were highly variable (58±34-fold, 

P=0.064, Figure 2).

Figure 2: Effects of ACTH (10 ng/mL) and Ang II (100 nmol/L) incubation on steroidogenic enzyme mRNA levels 

of in primary cultures of three normal adrenal glands and two Conn adenomas. Data presented as mean ± SEM. 

nd: not detectable. * P<0.05, ** P<0.01, compared to control condition. 
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Genetic analysis

The total sample size for this analysis was 11,192 (RS-I, n=4,742; RS-II, n=1760; RS-III, n=2,072; 

ERF, n=2,618). Characteristics of the study sample are presented in Table 1. The mean age of study 

participants varied from 48.3 years to 67.6 years. For analysis we selected 6 tagSNPs in HSD3B1. 

Table 1. Baseline characteristics of the study participants

RS-I

(n=4742)

RS-II

(n=1760)

RS-III

(n=2072)

ERF

(n=2618)

Age, y 67.6 63.9 56.0 48.4

Gender male, % 39.6 44.5 43.8 45.0

Body mass index, kg/m2 26.2 27.2 27.7 26.7

Systolic blood pressure, mmHg 139 143 135 140

Diastolic blood pressure, mmHg 74 79 85 80

Use of antihypertensive medication, % 18.3 21.6 20.7 20

Hypertension, % 53 59.6 47.2 47

n=number

 

Within cohort analyses were combined by meta-analysis and results for all SNPs are presented 

in Table 2 for SBP, Table 3 for DBP and Table 4 for hypertension. The T allele of rs4986952 

only increased systolic blood pressure in RS-II (effect 6.59 mmHg; SE 3.17; P=0.038), this effect 

diminished in the meta-analysis (effect 2.27 mmHg; SE 1.31; P=0.083, Table 2) and was also 

absent after Bonferroni correction. All other SNPs in HSD3B1 were not associated with systolic, 

diastolic blood pressure or hypertension (Tables 2, 3 and 4).

To confirm this result, we did a lookup in the ICBP project,18 a large collaboration of GWA studies 

on blood pressure with publicly available p-values. In this data none of the available SNPs was 

associated with systolic or diastolic blood pressure, however rs4986952 and rs1047303 were not 

available due to low frequency (Table 5).

To investigate whether younger subjects would have higher blood pressure with T allele of 

rs4986952 we performed age interaction analyses. A borderline significant interaction with age 

was found for SBP (RS-I P=0.036; RS-II P=0.955; RS-III P=0.584; ERF P=0.128; meta-analyses 

p=0.019), and no interaction was found for DBP (RS-I P=0.010; RS-II P=0.125; RS-III P=0.431; ERF 

P=0.716; meta-analyses P=0.220).
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Table 2. SNPs in the HSD3B1 gene associated with systolic blood pressure

SNPs Coded 

allele

Allele 

frequency

Meta-analysis 

(RS-I, RS-II, RS-III, ERF)

Beta SE Pval

Unadjusted

  rs4986952 T 0.037 2.39 1.40 0.087

  rs6428829 A 0.297 0.22 0.32 0.490

  rs6203 T 0.427 -0.21 0.32 0.513

  rs1047303 C 0.002 0.73 0.62 0.240

  rs10754400 G 0.345 0.33 0.31 0.296

  rs11581942 C 0.014 0.86 1.68 0.611

Adjusted *

  rs4986952 T 0.037 2.27 1.31 0.083

  rs6428829 A 0.297 0.15 0.27 0.575

  rs6203 T 0.427 -0.06 0.27 0.817

  rs1047303 C 0.002 0.16 0.41 0.704

  rs10754400 G 0.345 0.17 0.26 0.497

  rs11581942 C 0.014 0.67 1.44 0.643

SE= standard error; Pval= p-value; * Adjusted for age, age2, sex and body mass index 
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Table 3. SNPs in HSD3B1 gene associated with diastolic blood pressure

SNPs Coded 

allele

Allele 

frequency

Meta-analysis 

(RS-I, RS-II, RS-III, ERF)

Beta SE Pval

Unadjusted

  rs4986952 T 0.037 -0.50 0.73 0.492

  rs6428829 A 0.297 -0.09 0.16 0.598

  rs6203 T 0.427 -0.01 0.17 0.945

  rs1047303 C 0.002 0.17 0.31 0.590

  rs10754400 G 0.345 0.02 0.16 0.880

  rs11581942 C 0.014 -0.02 0.87 0.984

Adjusted *

  rs4986952 T 0.037 -0.47 0.71 0.502

  rs6428829 A 0.297 -0.07 0.15 0.638

  rs6203 T 0.427 0.03 0.15 0.822

  rs1047303 C 0.002 0.04 0.23 0.861

  rs10754400 G 0.345 0.002 0.14 0.987

  rs11581942 C 0.014 -0.10 0.79 0.897

SE= standard error; Pval= p-value; * Adjusted for age, age2, sex and body mass index  
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Table 4. SNPs in HSD3B1 gene associated with hypertension

SNPs Coded 

allele

Allele 

frequency

Meta-analysis (RS-I, RS-II, RS-III)

OR SE Pval

Unadjusted

  rs4986952 T 0.037 1.10 0.13 0.476

  rs6428829 A 0.297 0.97 0.04 0.336

  rs6203 T 0.427 0.99 0.04 0.831

  rs1047303 C 0.002 1.33 0.71 0.686

  rs10754400 G 0.345 0.95 0.05 0.229

  rs11581942 C 0.014 1.01 0.22 0.954

Adjusted *

  rs4986952 T 0.037 1.10 0.14 0.476

  rs6428829 A 0.297 0.97 0.04 0.466

  rs6203 T 0.427 0.97 0.03 0.467

  rs1047303 C 0.002 1.68 0.75 0.488

  rs10754400 G 0.345 0.99 0.04 0.740

  rs11581942 C 0.014 1.04 0.19 0.835

OR= odds ratio; SE= standard error; Pval= p-value; * Adjusted for age, age2, sex and body 

mass index

Table 5. SNPS of the HSD3B1 gene in the ICBP project.

SNPs Available ICBP 

project

P-value SBP P-Value DBP

HSD3B1

  rs4986952 No - -

  rs6428829 Yes 0.247 0.631

  rs6203 Yes 0.387 0.921

  rs1047303 No - -

  rs10754400 Yes 0.251 0.931

  rs11581942 Yes 0.812 0.462

SNPs= Single nucleotide polymorphisms; SBP = Systolic blood pressure; DBP = Diastolic 

blood pressure; ICBP= The International Consortium for Blood Pressure Genome Wide 

Association Studies 

- SNPs were not available due to low frequency. 
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Discussion

In the present study we found no or extremely low expression of HSD3B1 in the human adrenal 

cortex and no association between genetic variation in the HSD3B1 gene with systolic and diastolic 

blood pressure or hypertension in three large population-based studies and one family-based 

study. These findings plead against a significant role of HSD3B1 in the production of aldosterone 

in the ZG.

Since the discovery of two different 3ß-HSD enzymes that can both convert 5 steroids into  4 

steroids,4,19 it was commonly thought that the type II enzyme was responsible for all adrenocortical 

and gonadal steroidogenesis. The type I enzyme is mainly present in placenta and peripheral 

tissues, including liver, mammary gland and skin.5 This theorem was supported by the discovery 

of patients with congenital adrenal hyperplasia (CAH) and male pseudohermaphroditism due 

to 3ß-HSD deficiency. Sequence analysis showed that these patients harbored mutations in 

HSD3B2, whereas the HSD3B1 gene was not affected.20,21 This syndrome presents with a salt-

wasting phenotype in case of HSD3B2 mutations leading to a complete abrogation of 3ß-HSD 

activity. Less severe forms are characterized by residual in vitro enzyme activity.20,22 HSD3B2 thus 

appears the only 3ß-HSD in the human adrenal gland and gonads responsible for steroidogenesis 

as 3ß-HSD type 1 does not rescue 3ß-HSD activity in HSD3B2 mutant patients with a salt-wasting 

phenotype. 

Therefore, the findings in a recent study in mice that showed that type VI 3ß-HSD contributes 

to hypertension in circadian clock-deficient Cry-null mice6 were unexpected. This observation 

was extrapolated to the presence of HSD3B1 in the ZG in two human adrenocortical tissues 

through micro-dissection. Moreover, genetic evidence on a possible link between type I 3ß-HSD 

and aldosterone has been reported, since several studies in hypertensive subjects showed an 

association between HSD3B1 and hypertension.23-26

In the present study, we could not confirm the findings by the two previous reports in a series 

of adrenocortical tissues, including aldosterone-producing adenomas. Similar to these previous 

studies6,7 we used assays13 that were specific for the two different iso-enzymes to prevent cross-

reaction due to the high sequence homology. Human placenta, a tissue characterized by high 

HSD3B1 levels,5 showed ample expression of HSD3B1 whereas the HSD3B2 expression was not 

detectable. In our study, HSD3B1 expression was low to absent in the adrenal cortex and was not 

regulated by the main tropic hormones that stimulate adrenocortical steroidogenesis, ACTH and 

Ang II. In contrast, aldosterone synthase (CYP11B2) was enriched in Conn adenomas and potently 

stimulated by Ang II. HSD3B2 mRNA was ubiquitously expressed, also in Conn adenomas, and 

was induced by both ACTH and Ang II. Although we did not microdissect our tissue samples, the 

lack of Ang II effects on HSD3B1 pleads against a pivotal role of this enzyme in the physiology 

of aldosterone production. The discrepancies between our findings and the report by Wu et al.7 

might be caused by the use of different assays and these prevent definite conclusions with regard 

to the effect of HSD3B1 in pathological states of the zona glomerulosa, such as in hypertension 

associated with changes in circadian rhythm27 or primary hyperaldosteronism.
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The previously reported presence of HSD3B1 expression in the human ZG6 of the normal adrenal 

cortex could also relate to the presence of other adrenocortical cells, such as adrenal stem 

cells and progenitor cells.27 Aldosterone-producing cells were recently found to constitute only 

a small proportion of the ZG,28 and thus 3ß-HSD type I could be localized in non-aldosterone-

producing cells. This hypothesis is consistent with our findings that HSD3B1 is not induced by 

Ang II. Further determination of the role of type I 3ß-HSD in aldosterone production could be 

obtained by simultaneous immunostaining of CYP11B2 and HSD3B1 proteins, but due to the high 

sequence homology there are currently no specific antibodies that adequately distinguish between 

the two types of 3ß-HSD. This limitation is illustrated in the study by Wu et al. who used a non-

specific antibody to 3ß-HSD and found enriched staining in aldosterone-producing adenomas.7 

Alternatively, specific knockdown of the minimal amounts of HSD3B1 in primary adrenocortical 

cells could provide conclusive proof on the role of this enzyme in aldosterone production.

Twin and family studies previously indicated that a substantial proportion of blood pressure 

variance is due to the effect of genes, with heritability estimates ranging from 30 to 60%.29,30 

Rosmond et al.8 were the first who showed an association between HSD3B1 gene, blood 

pressure and hypertension. The T ➛ C Leu338 variant, rs6203, of HSD3B1 was shown to be 

associated with increased systolic and diastolic blood pressure in 263 men. In addition, the C 

allele was significantly more frequent in grade 1 hypertensive subjects (n=39). Shimodaira et al. 

subsequently demonstrated in 275 essential hypertension patients of Japanese origin that again 

rs6203 was associated with hypertension and that a second gain-of-stability and function SNP 

in HSD3B1, rs1047303,27 was also associated with hypertension.9 Moreover, these two SNPs 

were associated with higher plasma aldosterone levels. Variants in the HSD3B1 gene were also 

associated with blood pressure, plasma aldosterone and potassium in a cohort of 729 newly 

discovered and never treated hypertensive patients.10 In contrast, Speirs et al31 published a 

study with 168 essential hypertensive patients and 312 normotensive controls that did not 

confirm the results of the previous studies; no association was demonstrated between rs6203 

and hypertension. The recent Taiwanese study found an association between SNPs in HSD3B1 

(rs6203) and HSD3B2 (rs12410453) and the occurrence of primary hyperaldosteronism. These 

findings do not reveal which of the iso-enzymes is responsible for aldosterone production in the 

human adrenal cortex, but might support a possible role of HSD3B1 in the pathophysiology of 

primary hyperaldosteronism.
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The present study, also including rs6203 and rs1047303, does not support the evidence of 

association between the HSD3B1 gene and blood pressure. Compared to previous studies that 

showed an association between HSD3B1 gene and blood pressure, our cohort size was more than 

ten times larger. On the other hand, the current results are obtained in a generally older, Caucasian 

population and therefore cannot be automatically extrapolated to other populations, although 

an older population is prone for hypertension. One SNP from the HSD3B1 gene, rs4986952, 

was borderline associated with SBP. The ERF study included relatively younger subjects from 

an isolated population, compared to the Rotterdam study populations. We hypothesized that on 

younger age there could be an effect of HSD3B1 on blood pressure and we performed therefore 

age-interaction analyses for rs4986952. No age interaction was found, implying that there is no 

age effect of HSD3B1 on blood pressure. We unfortunately have no data on aldosterone levels or 

the occurrence of primary hyperaldosteronism in the subjects of our cohort. 

To conclude, through genetic and expression level analyses we found no relation between 

HSD3B1 and aldosterone production, blood pressure or hypertension. Therefore, it is unlikely 

that HSD3B1 plays a physiological role in human aldosterone synthesis. Consistent with the 

phenotype of HSD3B2 mutants, these studies support HSD3B2 as the pivotal enzyme responsible 

for all adrenocortical steroidogenesis. The role of HSD3B1 in primary hyperaldosteronism requires 

further investigation.
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Genome-wide association study of pulse pressure 

and mean arterial pressure: ICBP

Based on 

Genome-wide association study identifies six new loci influencing pulse pressure and mean arterial 

pressure. Nat Genet. 2011 Sep 11;43(10):1005-11. 
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Abstract

Background

Numerous genetic loci have been associated with systolic blood pressure (SBP) and diastolic 

blood pressure (DBP) in Europeans. We undertook a genome-wide association study of two 

further blood pressure phenotypes, pulse pressure (PP) and mean arterial pressure (MAP). 

Methods 

We conducted a meta-analysis of genome-wide association study of PP and MAP  in the setting of 

the International Consortium of Blood Pressure Genome-Wide Association Studies (ICBP-GWAS). 

Discovery analyses were performed in 76,064 subjects of 35 studies from European ancestry. 

Independent follow-up analysis were performed in 48,607 subjects from European ancestry.

Results 

We identified at genome-wide significance (P= 2.7x10-8 to P=2.3x10-13) four novel PP loci (at 4q12 

near CHIC2/PDGFRAI, 7q22.3 near PIK3CG, 8q24.12 in NOV, 11q24.3 near ADAMTS-8), two novel 

MAP loci (3p21.31 in MAP4, 10q25.3 near ADRB1) and one novel locus associated with both traits 

(2q24.3 near FIGN). For three of the novel PP signals, the estimated effect for SBP was opposite 

to that for DBP, in contrast to the majority of common SBP- and DBP-associated variants which 

show concordant effects on both traits.

Conclusions 

These findings indicate novel genetic mechanisms underlying blood pressure variation, including 

pathways that may differentially influence SBP and DBP.
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Introduction

High blood pressure is a major risk factor for coronary heart disease and stroke1. Large genome-

wide association studies in Europeans have reported 29 novel loci for systolic and diastolic 

blood pressure (SBP and DBP) where alleles have effect sizes of up to 0.5-1mm Hg2-4. Even 

small increments in blood pressure levels have important effects on cardiovascular morbidity 

and mortality at the population level5. We undertook a genome-wide association study of two 

further blood pressure phenotypes, pulse pressure (PP, the difference between SBP and DBP), a 

measure of stiffness of the main arteries, and mean arterial pressure (MAP), a weighted average 

of SBP and DBP. Both PP and MAP are predictive of hypertension6 and cardiovascular disease7-11. 

Methods

This study was undertaken by the International Consortium of Blood Pressure Genome-Wide 

Association Studies (ICBP-GWAS), which aims to further the understanding  of the genetic 

architecture underlying blood pressure. 

We first conducted a genome-wide association meta-analysis of PP and MAP in 74,064 individuals 

of European ancestry from 35 studies. Genotypes were imputed using HapMap. To account 

for effects of anti-hypertensive treatments, we imputed underlying SBP and DBP by adding a 

constant to each3,4. Associations were adjusted for age, age2, sex and body mass index. We 

combined results across studies using an inverse variance weighted meta-analysis and, to correct 

for residual test statistic inflation, applied genomic control (GC) both to study-level association 

statistics and to the meta-analysis (λGC=1.08 for PP, λGC=1.12 for MAP)12. Independent follow-up 

analyses were performed in 48,607 individuals of European ancestry.
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Results

SNPs in 12 regions showed genome-wide significant association (P<5x10-8) with either PP or 

MAP in our discovery data (Stage 1), including two novel regions for PP (7q22.3 near PIK3CG, 

P=1.2x10-10 and 11q24.3 near ADAMTS8, P=8.5x10-11; Table 1) and 10 regions previously 

associated with SBP and DBP2-4. For follow-up in a series of independent cohorts we selected 

99 SNPs comprising those with P<1x10-5 for either PP or MAP and SNPs reported in recent large 

genome-wide association studies of SBP and DBP2-4 to evaluate their effects on PP and MAP 

(Stage 2). 

After meta-analysis of the Stage 1 and Stage 2 data, the two novel regions showing genome-wide 

association with PP after Stage 1 (near PIK3CG and near ADAMTS8) remained genome-wide 

significant. In addition, we found genome-wide significant associations for SNPs at two further 

novel loci for PP (at 4q12 near CHIC2/PDGFRA and 8q24.12 in NOV), two novel loci for MAP 

(3p21.31 in MAP4, 10q25.3 near ADRB1), and one novel locus for both traits (2q24.3 near FIGN) 

(Table 1). The novel signals for MAP were strongly associated with both SBP and DBP (P=7.7x10-7 

to P=1.8x10-12), reflecting the high inter-correlations among these three blood pressure traits10,13. 

For the sentinel SNPs in three of the novel PP loci, the estimated effects on SBP were in the 

opposite direction to the effects on DBP (Table 1, Figure 1). Our findings show that analyses of PP 

and MAP reveal loci influencing blood pressure phenotypes which may not always be detectable 

by studying SBP and DBP separately.

Five additional loci for PP and 19 loci for MAP reaching genome-wide significance (P<5x10-8, 

Stage 1 and Stage 2 combined) were recently shown to be associated with SBP/DBP2-4. We 

used sentinel SNPs from both the novel and known regions showing genome-wide significant 

associations with PP or MAP in the combined Stage 1 and 2 data to create weighted risk scores 

for: i) PP (10 independent SNPs) and; ii) MAP (22 SNPs). We studied the associations of both 

risk scores with hypertension and blood pressure related outcomes including coronary heart 

disease, heart failure, stroke, echocardiographic measures of left ventricular structure, pulse wave 

velocity, renal function and renal failure. Adjusting for multiple testing for the 12 traits evaluated 

(P=0.05/12=4.1x10-3), the PP SNP risk score was associated with prevalent hypertension 

(P=7.9x10-6), incident stroke (P=4.9x10-4) and coronary heart disease (P=4.3x10-4), and the MAP 

SNP risk score was associated with hypertension (P=5.1x10-16), coronary heart disease (P=4.0 

x10-20), stroke (P=0.0019) and left ventricular wall thickness (P=2.1x10-4), highlighting the clinical 

relevance of these alternative measures of blood pressure phenotype9,11. 
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Table 1. Top genome-wide association results for PP and MAP

Locus Coded allele 

& freq

Stage 1 Stage 2 Stage 1+ 2 SBP Stage 1+2 DBP Stage 1+2

 N eff Beta (Se) P N eff Beta (Se) P N eff Beta (Se) P Beta (Se) P Beta (Se) P

Pulse Pressure

rs13002573

near FIGN

G 

0.203

73043 -0.320

(0.07)

5.43x10-6 43955 -0.296

(0.089)

8.58x10-4 116998 -0.310 

(0.055)

1.76x10-8 -0.416 

(0.081)

3.25x10-7 -0.107

(0.052)

4.02x20-2

rs871606

near CHIC2

T 

0.85

71444 0.428

(0.096)

9.28x10-06 44082 0.431

(0.121)

3.75x10-4 115525 0.429

(0.075)

1.32x10-8 0.403

(0.112)

3.04x10-4 -0.010

(0.072)

8.85x10-1

rs17477177

near PIK3CG

T 

0.717

72997 -0.460

(0.071)

1.19x10-10 39999 -0.344

(0.094)

2.72x10-4 112996 -0.418

(0.057)

2.27x10-13 -0.552

(0.084)

5.67x10-11 -0.081

(0.055)

1.40x10-1

rs2071518

NOV (3’ UTR)

T 

0.167

73252 0.304

(0.067)

5.72x10-6 45804 0.323

(0.086)

1.60x10-4 119056 0.312

(0.053)

3.66x10-9 0.181

(0.078)

2.08x10-2 -0.145

(0.050)

3.89x10-3

rs11222084

near 

ADAMTS-8

T

0.375

67704 0.415

(0.064)

8.45x10-11 40391 0.211

(0.081)

9.17x10-3 108095 0.337

(0.05)

1.90x10-11 0.263

(.074)

4.00x10-4 -0.101

(0.048)

3.44x10-2

Mean Arterial Pressure

rs1446468

near FIGN

T

0.534

69264 -0.291

(0.061)

1.68x10-6 39650 -0.418

(0.082)

3.80x10-7 108914 -0.336

(0.049)

6.46x10-12 -0.499

(0.071)

1.82x10-12 -0.265

(0.046)

6.88x10-9

rs319690

MAP4 (intron)

T 

0.51

59137 0.306

(0.066)

3.88x10-6 34359 0.280

(0.09)

1.89x10-3 93496 0.297

(0.053)

2.69x10-8 0.423

(0.077)

4.74x10-8 0.282

(0.05)

1.84x10-8

rs2782980

near ADRB1

T

0.198

61284 -0.345

(0.071)

1.14x10-6 37788 -0.326

(0.094)

5.55x10-4 99072 -0.338

(0.057)

2.46x10-9 -0.406

(0.082)

7.66x10-7 -0.283

(0.053)

9.60x10-8

Table 1 – Summary of Pulse Pressure (PP) and Mean Arterial Pressure (MAP) association results from Stages 

1 and 2 and the combined analysis for all SNPs that showed genome-wide significant (P<5x10-8) association 

with PP and/or MAP on combined analysis and which had not previously been reported for Systolic (SBP) or 

Diastolic Blood Pressure (DBP). SBP and DBP combined Stage 1 and Stage 2 association results, based on the 

same sample set as for PP and MAP are also shown.
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Table 1. Top genome-wide association results for PP and MAP

Locus Coded allele 

& freq

Stage 1 Stage 2 Stage 1+ 2 SBP Stage 1+2 DBP Stage 1+2

 N eff Beta (Se) P N eff Beta (Se) P N eff Beta (Se) P Beta (Se) P Beta (Se) P

Pulse Pressure

rs13002573

near FIGN

G 

0.203

73043 -0.320

(0.07)

5.43x10-6 43955 -0.296

(0.089)

8.58x10-4 116998 -0.310 

(0.055)

1.76x10-8 -0.416 

(0.081)

3.25x10-7 -0.107

(0.052)

4.02x20-2

rs871606

near CHIC2

T 

0.85

71444 0.428

(0.096)

9.28x10-06 44082 0.431

(0.121)

3.75x10-4 115525 0.429

(0.075)

1.32x10-8 0.403

(0.112)

3.04x10-4 -0.010

(0.072)

8.85x10-1

rs17477177

near PIK3CG

T 

0.717

72997 -0.460

(0.071)

1.19x10-10 39999 -0.344

(0.094)

2.72x10-4 112996 -0.418

(0.057)

2.27x10-13 -0.552

(0.084)

5.67x10-11 -0.081

(0.055)

1.40x10-1

rs2071518

NOV (3’ UTR)

T 

0.167

73252 0.304

(0.067)

5.72x10-6 45804 0.323

(0.086)

1.60x10-4 119056 0.312

(0.053)

3.66x10-9 0.181

(0.078)

2.08x10-2 -0.145

(0.050)

3.89x10-3

rs11222084

near 

ADAMTS-8

T

0.375

67704 0.415

(0.064)

8.45x10-11 40391 0.211

(0.081)

9.17x10-3 108095 0.337

(0.05)

1.90x10-11 0.263

(.074)

4.00x10-4 -0.101

(0.048)

3.44x10-2

Mean Arterial Pressure

rs1446468

near FIGN

T

0.534

69264 -0.291

(0.061)

1.68x10-6 39650 -0.418

(0.082)

3.80x10-7 108914 -0.336

(0.049)

6.46x10-12 -0.499

(0.071)

1.82x10-12 -0.265

(0.046)

6.88x10-9

rs319690

MAP4 (intron)

T 

0.51

59137 0.306

(0.066)

3.88x10-6 34359 0.280

(0.09)

1.89x10-3 93496 0.297

(0.053)

2.69x10-8 0.423

(0.077)

4.74x10-8 0.282

(0.05)

1.84x10-8

rs2782980

near ADRB1

T

0.198

61284 -0.345

(0.071)

1.14x10-6 37788 -0.326

(0.094)

5.55x10-4 99072 -0.338

(0.057)

2.46x10-9 -0.406

(0.082)

7.66x10-7 -0.283

(0.053)

9.60x10-8

Table 1 – Summary of Pulse Pressure (PP) and Mean Arterial Pressure (MAP) association results from Stages 

1 and 2 and the combined analysis for all SNPs that showed genome-wide significant (P<5x10-8) association 

with PP and/or MAP on combined analysis and which had not previously been reported for Systolic (SBP) or 

Diastolic Blood Pressure (DBP). SBP and DBP combined Stage 1 and Stage 2 association results, based on the 

same sample set as for PP and MAP are also shown.
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Discussion

None of the genes in the identified novel regions is a strong candidate for blood pressure 

regulation, although several are implicated in mechanisms that may influence blood pressure. 

The most significant association with PP is within a putative mRNA clone (AF086203) spanning 

~13.7kb at 7q22.3, 94kb upstream of PIK3CG (rs17477177, P=2.3x10-13, Table 1). PIK3CG encodes 

the phosphoinositide-3-kinase, catalytic, gamma polypeptide protein which phosphorylates 

phosphoinositides and modulates extracellular signals. This region was earlier associated with 

mean platelet volume, platelet count, and platelet aggregation14-16, but the sentinel SNPs reported 

in those studies are independent of SNP rs17477177 reported here (r2<0.01). Mice lacking the 

catalytic subunit of PI3Kgamma have shown resistance to SBP-lowering effects of beta-adrenergic 

receptor agonists17; PI3Kgamma activity is increased in the failing human heart and associated 

with down-regulation of beta-adrenergic receptors in the plasma membrane18. The second locus 

for PP located at 11q24.3 spans 35.5kb with the top-ranking SNP (rs11222084, P=1.9x10-11) lying 

1.6kb downstream of ADAMTS-8. This gene is highly expressed in macrophage-rich areas of 

human atherosclerotic plaques and may affect extracellular matrix remodeling19. The third locus 

for PP spans 28.5kb at 8q24.12 with the sentinel SNP (rs2071518, P=3.7x10-9) located in the 

3’UTR of NOV which encodes the nephroblastoma overexpressed (CCN3) protein, associated 

with angiogenesis, proliferation, and inhibition of vascular smooth muscle cell growth and 

migration20, and with reduced neointimal thickening in mice null for CCN321. Mice with mutations 

in NOV that truncate the NOV protein exhibit abnormal cardiac development22. Of the genes 

evaluated for expression in human aortic samples at the novel PP loci, NOV showed by far the 

highest expression levels. The fourth locus for PP is 4q12 with the top-ranking SNP (rs871606, 

P=1.3x10-8) located 76.7kb downstream of CHIC2 which encodes a cysteine-rich hydrophobic 

domain containing protein associated with acute myeloid leukaemia23. This SNP is located 296kb 

upstream of PDGFRA which encodes platelet-derived growth factor receptor alpha, a cell surface 

receptor for members of the platelet-derived growth factor family involved in kidney development. 

Variants in PDGFRA have been associated with red blood cell count and other haematological 

indices24 but are independent (r2<0.3) of rs871606. 

For MAP we identified two novel loci. The first locus for MAP is at 10q25.3, 22.3kb upstream of 

ADRB1 (rs2782980, P=2.5x10-9). ADRB1 encodes the beta-1-adrenergic receptor, which mediates 

the effects of the stimulatory G protein and cAMP/protein kinase A pathway to increase heart rate 

and myocardial contraction. Polymorphisms in this gene have been associated with resting heart 

rate, response to beta-blockers25, and hypertension26. ADRB1 knockout mice have no difference 

in heart rate or blood pressure compared with the wild type but do exhibit a significant reduction 

in the response of both phenotypes to catecholamines27. SNP rs2782980 is associated with 

expression of an ADRB1 transcript in brain tissue.The second locus for MAP spans over 300kb at 

3p21.31 with the top-ranking SNP (rs319690, P=2.7x10-8) lying within an intron of the microtubule 

associated protein 4 gene, MAP4. Coating of microtubules by MAP4 may inhibit beta adrenergic 

receptor recycling and number, as seen in cardiac hypertrophy and failure28. MAP4 was detectably 

expressed in human aortic samples.
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The locus associated both with PP (SNP rs13002573, P=1.8x10-8) and MAP (rs1446468, P= 

6.5x10-12) is in an intergenic region spanning ~280kb at 2q24.3, although the two signals are 

~50kb apart and statistically independent (r2=0.075). The top PP SNP lies ~320kb upstream of 

FIGN and ~430kb downstream of GRB14 (growth factor receptor-bound protein 14). Relatively little 

is known regarding FIGN (fidgetin). 

We report seven novel loci associated with PP and MAP based on genome-wide discovery and 

follow-up among a total of ~125,000 individuals. Our results expand knowledge of the genetic 

architecture of blood pressure and PP regulation and may give clues as to possible novel targets 

for blood pressure therapies. 

 

Figure 1 - Systolic Blood Pressure (SBP) and Diastolic Blood Pressure (DBP) effect sizes (beta coefficients) for 

all BP SNPs identified in the present study, obtained from follow-up samples only. Beta coefficients are shown 

as standard deviation (s.d.) differences so that SBP and DBP are measured on comparable scales. The novel 

SNPs found in the present study are labelled with their rs-numbers. For illustration purposes the effect allele for 

each SNP is defined such that the direction of the SBP effect is always positive.
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Abstract

Background

Carotid-femoral pulse wave velocity (CFPWV) is a heritable, direct measure of aortic stiffness that 

is strongly associated with increased risk for major cardiovascular disease events.  

Methods 

We conducted a meta-analysis of genome-wide association data in 9 community-based European 

ancestry cohorts consisting of 20,634 participants. Results were replicated in 2 additional 

European ancestry cohorts involving 5,306 participants.  

Results

We identified a locus on chromosome 14 in the conserved core of the BCL11B gene enhancer that 

is associated with CFPWV (rs7152623, minor allele frequency = 0.42, P = 7.4 x 10-11; replication 

P = 1.4 x 10-6; meta-analysis P = 3.1 x 10-15). The association persisted when adjusted for mean 

arterial pressure (P = 1.0 x 10-11). Results were consistent in younger (<55 years, 6 cohorts, 

N=13,914, P = 2.3 x 10-9) and older (9 cohorts, N=12,026, P = 9.4 x 10-6) participants. In separate 

meta-analyses, the locus was associated with increased risk for coronary artery disease (hazard 

ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08, P=0.0013) and heart failure (HR=1.10, CI=1.03 

to 1.16, P=0.004).

Conclusions 

Common genetic variation in the BCL11B gene enhancer is associated with higher CFPWV and 

increased risk for cardiovascular disease. BCL11B codes for a transcription factor interacting 

protein and transcriptional repressor that modulates several pathways relevant to aortic function, 

including cardiovascular development, T-cell differentiation, cellular senescence, and matrix 

protein expression.  Elucidation of the role this novel locus plays in aortic stiffness may facilitate 

development of therapeutic interventions that limit aortic stiffening and related cardiovascular 

disease events.
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Introduction

Several recent studies have demonstrated that carotid-femoral pulse wave velocity (CFPWV), a 

direct measure of stiffness of the wall of the thoracic and abdominal aorta, is associated with 

increased risk for major cardiovascular disease (CVD) events in high risk1-4 and community-based 

samples5-8. Various risk factors for abnormal CFPWV have been identified, including standard 

CVD risk factors such as age, glucose intolerance, lipid disorders, and hypertension9. In addition, 

CFPWV is a moderately heritable trait,10;11 although molecular mechanisms contributing to 

aortic stiffness remain largely undefined. In light of evidence of a genetic component of aortic 

stiffness, we performed a meta-analysis of genome-wide association study (GWAS) data from 9 

community based cohorts, with replication genotyping in 2 additional cohorts, in order to evaluate 

associations of common genetic variation with CFPWV. In addition, we hypothesized that in light of 

the association between CFPWV and CVD risk, genetic variants that affect CFPWV should have a 

proportional effect on CVD risk. Therefore, we interrogated existing clinical endpoint GWAS data to 

determine whether variants associated with CFPWV were associated with CVD risk.

Methods

Consortium Organization

The AortaGen Consortium includes 9 cohort studies that completed genome-wide genotyping 

and had measured CFPWV, plus 2 cohort studies that had measured CFPWV and collected 

DNA for replication genotyping. Each study adopted collaboration guidelines and the consortium 

established a consensus on phenotype harmonization, covariate selection, and an analytical plan 

for within-study genome-wide association and prospective meta-analysis of results across studies. 

Each study received institutional review board approval of its consent procedures, examination 

and surveillance components, data security measures, and DNA collection and its use for genetic 

research. All participants in each study gave written informed consent for participation in the study 

and the conduct of genetic research. (Table 1)

Genotyping and Imputation 

For genome-wide SNP sets, genotyping was carried out using commercially available arrays. 

Prior to imputation, quality control measures were applied as outlined in Supplementary Table S1. 

MACH was used by all cohorts for imputation of genotypes to the HapMap set of approximately 

2.5 million SNPs.  

Expression Methods

Human Tissues and Cell Lines

Commercially available cultured human aortic smooth muscle cells, adult human cardiac fibroblasts 

and human umbilical vein endothelial cells (HUVEC) were purchased and cultured according to the 

protocol recommended by the manufacturer (Cell Application Inc); CD3+ enriched cells from a 

healthy donor were provided by Dr. P. Olkhanud (NIA, Baltimore, USA).
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Aortic Tissue Collection and Conservation  

The aortic tissue samples were obtained from cadaveric donors or beating heart donors through 

transplant coordinators from the Addenbrooke’s Hospital, Cambridge. Fresh thoracic and 

abdominal aorta removed by the surgical team at the time of organ donation was immediately 

placed in tissue medium and transported to the Addenbrooke’s Hospital, where it was processed 

immediately. Each specimen was trimmed free of blood vessels, fat and any surrounding deposits.  

A sample of tissue from the ascending aortic rings was chopped into small pieces and preserved 

overnight at 4°C in a tube containing RNAlater solution. Solution was removed the following 

day and sample stored at -80°C for RNA extraction. All samples and patient data were handled 

in accordance with the policies and procedures of the Human Tissue Act, and the study was 

approved by the Local and Regional Ethics Committees. Informed consent was also obtained 

from the relatives.

RNA Extraction, cDNA Preparation, PCR Amplification and Sequencing

Total RNA was extracted using RNeasy Mini Kit (Qiagen Inc) with an additional on-column DNAse 

digestion step, according to the protocol recommended by the manufacturer. Commercially 

available total RNA samples extracted from human heart, human skeletal muscles, human kidney 

and human brain were obtained from Cell Application Inc. For cDNA synthesis, 2 g of total RNA 

were used with the cDNA Archive Kit (Applied Biosystems Inc) using oligo (dT) primers in 25 g 

of final volume. A control sample lacking reverse transcriptase was processed along with each 

cDNA synthesis in order to detect genomic DNA contamination. For subsequent PCR reactions, 

1 l of cDNA mixture was used together with Platinum Taq-Polymerase (Invitrogen Inc) or KOD-

polymerase (Novagen Inc) in a final volume of 25 l. Primers were designed with Vector NTI 11.0 

software. Amplification products of appropriate size were excised from agarose gel and purified 

with QIAquick Gel Extraction Kit (Qiagen Inc); recovered DNA fragments were cloned with TOPO 

TA Cloning® Kit (Invitrogen Inc). Three independent clones for each sample were selected for 

follow-up sequencing to avoid possible reading errors. We used BigDye® Terminator v1.1 kit 

(Applied Biosystems Inc) for sequencing reaction and samples were analyzed on a 3130xl Genetic 

Analyzer (Applied Biosystems Inc). 

Total RNA was extracted from human aortic tissue using the TRIzol® Plus RNA Purification System 

(Invitrogen). Extraction of RNA was conducted according to the manufacturer’s protocol and was 

further purified using PureLink™ silica-gel spin columns followed by DNase I digestion to minimize 

genomic DNA contamination (Invitrogen, PureLink™ RNA Mini Kit).  First strand cDNA synthesis 

was performed on 1 g total RNA using AMV reverse transcriptase according to manufacturer 

instructions (Reverse Transcription System, Promega). Reverse transcription was initiated using 

random hexamer primers and the reaction carried out at 42°C for 60 min, followed by heat 

inactivation at 95°C for 5 min.  PCR primers were designed to target BP432414, DB129663, 

BCL11B and VRK1 (Supplementary Table S2). A 5 l aliquot of cDNA was used as template DNA 

in a 25 l PCR reaction. Each reaction contained 5 pmol of each primer, 0.1 mM dNTPs, 1 U 

AGSGold™ DNA polymerase, 2.5 mM MgCl2, 75 mmol/L Tris-HCL (pH 9.0), 20 mM (NH4)2SO2, 

and 0.01% TWEEN-20. The PCR protocol consisted of 10 min at 95°C, followed by a touchdown 
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procedure of 15 cycles of 95°C for 15 s, 68°C for 15 s, and 72°C for 15 s, decreasing annealing 

by 1°C per cycle.  Following the initial 15 cycles the method consisted of 30 cycles of 95°C for 

15 s, 55°C for 15 s, and 72°C for 15 s, with a final extension of  72°C for 10 min. To verify that 

the amplified product was the targeted gene, the product from one sample was sequenced at 

Geneservice (www.geneservice.co.uk) using Sanger sequencing followed by analysis on Applied 

Biosystems 3730 DNA Analyzer.

Statistical Analyses 

The phenotype for meta-analysis was a sex-specific (in Framingham, cohort- and sex-specific) 

standardized regression residual for 1000/CFPWV, adjusted for age, age2, height and weight.  

Genome-wide association analyses were conducted within each cohort using an additive gene-

dose model.  Linear mixed effects models were fitted to account for relatedness in pedigrees. 

Within-study associations were combined by prospective meta-analysis using inverse-variance 

weighting. During meta-analysis, results were filtered for weighted mean minor allele frequency 

<0.01 and the genomic control parameter was calculated to adjust each study. After meta-analysis, 

the genomic control parameter was recalculated to adjust for among-study heterogeneity. For the 

initial meta-analysis, a pre-determined threshold of 4.0 x 10-7 (stage 1) was used to select SNPs 

for attempted replication.12  Based on a preliminary analysis of 6 cohorts, we selected SNPs from 

2 loci (the SNP with the lowest P and 1 or 2 proxy SNPs to accommodate differing genotyping 

platforms) for attempted replication. SNPs were genotyped in 2 additional cohorts and analyzed 

within cohort using a similar analysis plan except that observed rather than imputed genotypes 

were used in the analyses.  Results from the 2 replication cohorts were then combined by meta-

analysis.  We considered a P<0.025 (0.05/2) and same direction of effect for the replication meta-

analysis as indicative of successful replication. To assess possible effect modification by age, we 

performed an age-stratified analysis based on the approximate overall median age of 55 years. 

For cohorts that spanned this age cutoff (FHS, ERF, Sardinia, ACCT), analyses were repeated in 

subgroups <55 and ≥55 years of age. Cohorts with predominantly older (AGES, BLSA, HABC, 

RS-I, RS-II) or younger (HAPI, Asklepios) participants were included in the older or younger group 

in their entirety to preserve adequate sample size. These groupings resulted in 9 sets of data 

consisting of predominantly older participants and 6 sets of data consisting of predominantly 

younger participants.  
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Results

Characteristics of participants at the time of CFPWV measurement in the 11 (9 discovery, 2 

replication) AortaGen Consortium cohorts are presented in Table 1. Cohort mean age varied from 

34 to 75 years whereas cohort mean CFPWV varied from 5.5 to 13.6 m/s, corresponding to inverse 

CFPWV of 193 to 77 ms/m, respectively.  Sample sizes varied from 618 to 6,033 participants, 

with an aggregate of 20,634 and 5,306 participants in the discovery and replication phases, 

respectively.

GWAS meta-analysis results from 9 cohorts are summarized in Figure 1. The quantile-quantile 

(Q-Q) plot shows minimal evidence of test statistic inflation (λgc = 1.03) and a sharp divergence 

from a slope near unity at a P-value of approximately 1 x 10-4.  The negative log P (Manhattan) 

plot reveals a region of genome-wide significant association on the distal long arm of chromosome 

14 (14q32.2, rs1381289, beta=-0.073±0.011 SD/allele, P = 5.6 x 10-11).  In addition, there is a 

suggestive region of association on the short arm of chromosome 10 (10p12.32, rs10764094, 

beta=-0.057±0.011 SD/allele, P=2.4x10-7).  A listing of top SNPs from the 9-cohort meta-analysis 

with a P < 1 x 10-5 is presented in Table 2.  The table provides results for the top SNP from 

separate loci defined by LD structure (r2<0.80). 

Figure 1.  Q-Q and signal intensity (Manhattan) plots of genome-wide association data for CFPWV.  The upper 

horizontal line corresponds to P = 4.0 x 10-7 whereas the lower line corresponds to P = 1.0 x 10-5.
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Based on a preliminary meta-analysis of early GWAS results from 6 cohorts (Table 1; AGES, FHS, 

ERF, RS-I, RS-II, and Sardinia; 17,854 participants), we selected rs7152623 on chromosome 

14 and rs17729837 on chromosome 10 for attempted replication.  We successfully replicated 

the association with rs7152623 on chromosome 14 (replication beta=-0.086±0.020 SD/allele, 

P=1.4x10-6, combined beta=-0.076±0.010 SD/allele, P=3.1x10-15, Figure 2). The effect was 

attenuated modestly and remained significant when we further adjusted for mean arterial pressure 

at the time of measurement of CFPWV (beta=-0.060±0.009 SD/allele, P=1.0 x 10-11).  In addition, 

results were consistent when evaluated separately in subgroups defined by median age, remaining 

associated in both younger (<55 years of age, 6 cohorts, N=13,914, beta=-0.081±0.014 SD/allele, 

P=2.3 x 10-9) and older (≥55 years of age, 9 cohorts, N=12,026, beta=-0.061±0.014 SD/allele, 

P=9.4x10-6) participants.  The association with rs17729837 on chromosome 10 did not replicate 

(P = 0.97).

Details of the region of significant association on chromosome 14 are presented online.

Figure 2.  Forest plot of association results for rs7152623 on chromosome 14.  Results for individual cohorts are 

plotted against the cohort effect size (beta coefficient). The size of the box is proportional to the study’s weight 

in the meta-analysis (inversely proportional to estimated variance of the effect-size estimator). Horizontal lines 

are the 95% confidence intervals.  Diamonds represent the results of meta-analyses; the center denotes overall 

estimate and the width denotes 95% confidence interval.
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To assess potential functional implications of our findings, we used reverse transcriptase 

polymerase chain reaction (RT-PCR) to evaluate expression of DB129663 and BP432414 in 

human aortic samples and various cell lines.  In light of the putative role of this region as a remote 

enhancer of BCL11B14 and relative proximity to VRK1, we also probed for expression of these 

genes. DB129663, BP432414, BCL11B and VRK1 were detected in whole aortic rings. VRK1 

and DB129663 were expressed in cultured aortic smooth muscle cells, human umbilical vein 

endothelial cells (HUVECs) and adult cardiac fibroblasts.  BCL11B was expressed in the same 

samples except cardiac fibroblasts. All transcripts were expressed in CD3+ cells.

To assess the potential clinical relevance of our finding of a locus on Chr14 strongly associated 

with CFPWV, we performed a lookup in GWAS results for various clinical endpoints thought to be 

related to arterial stiffness. We looked up the SNP with the lowest P-value in the meta-analysis of 

9 cohorts (rs1381289, Table 2) and found an association with increased risk for coronary artery 

disease (hazard ratio [HR]=1.05, confidence interval [CI]=1.02 to 1.08 per allele, P=0.0013) and 

heart failure (HR=1.10, CI=1.03 to 1.16 per allele, P=0.004). In the Framingham Heart Study, after 

adjusting for age and sex, CFPWV was associated with an excess cardiovascular disease risk 

corresponding to a HR=1.65 per SD.15 Based on this estimate, and given that each minor allele 

of rs1381289 was associated with a 0.073 SD increase in CFPWV, we would anticipate that the 

association between rs1381289 and CFPWV would result in an excess risk for cardiovascular 

disease events corresponding to HR=1.047 per allele, which is comparable to the findings from 

GWAS results. In addition, rs1381289 was associated with higher pulse pressure (beta=0.18±0.06 

mm Hg/allele, P=0.002), indicating that the increase in aortic stiffness associated with this SNP is 

detectable as a modest but significant increase in pressure pulsatility. In contrast, the SNP was 

not associated with stroke (P>0.7), glomerular filtration rate estimated by using serum creatinine 

(P>0.6) or cystatin (P>0.5) or prevalent chronic kidney disease (P>0.6).

We also sought to replicate a previously reported association between CFPWV and a SNP 

(rs3742207) in COL4A1.16  After excluding 2 cohorts involved in the original report (Sardinia, HAPI), 

we found modest evidence of association for this SNP (rs3742207, beta=-0.025±0.011 SD/allele, 

P=0.017).
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Table 1. Clinical characteristics of study participants.

Cohort N Percent 

women

Age (yrs) Percent <55 

yrs of age

Height (cm) Weight (kg) CFPWV (m/s) Inverse CFPWV 

(ms/m)

Years of CFPWV 

assessment

Years of DNA 

collection

AGES 967 58 75±5 0 168±9 75±14 13.1±4.3 83±24 2005 2002-2006

BLSA 618 49 62±18 34 170±10 75±16 7.2±2.5 154±49 1989-2008 1995-2006

ERF 1970 57 48±14 55 167±9 75±15 9.5±2.1 110±21 2002-2005 2002-2005

FHS 6033 54 49±15 68 169±10 77±17 8.5±3.5 131±35 1999-2001* 

1998-2001†

2002-2005‡

1996-1999*

1996-1999†

2002-2005‡

HABC 1354 49 74±3 0 166±9 74±14 8.8±3.7 131±47 1997-1998 1997-1998

HAPI 808 46 46±15 67 167±9 74±13 5.5±1.4 193±42 2003-2008 2000-2008

RS-I 3011 57 72±7 0 167±9 74±12 13.6±3.0 77±17 1997-1999 1990-1993

RS-II 1657 54 64±8 0 169±9 77±13 12.6±3.2 84±18 2000-2001 2000-2001

SARDINIA 4216 56 43±17 78 160±9 65±13 6.7±2.1 163±44 2001-2004 2001-2004

Replication Cohorts

ACCT 2932 52 34±19 77 171±10 72±14 6.7±2.2 161±40 2001-2009 2001-2009

Asklepios 2374 52 46±6 93 169±9 74±14 6.6±1.5 157±29 2002-2004 2002-2004

Mean values ± SD except as noted; *Original cohort; †Offspring cohort; ‡Third Generation 

cohort; AGES, Age, Gene/Environment Susceptibility-Reykjavik Study; BLSA, Baltimore 

Longitudinal Study of Aging; ERF, Erasmus Rucphen Family Study; FHS, Framingham 

Heart Study; HABC, Health, Aging and Body Composition; HAPI, Heredity and Phenotype 

Intervention; RS, Rotterdam Study; ACCT, Anglo Cardiff Collaborative Trial. 
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Table 2. Genome wide association results for CFPWV in 9 cohorts.

Chromosome Allele Meta-analysis* Closest Gene

SNP Number Position Coded Freq Beta SE P

rs1381289 14 97,662,117 T 0.436 -0.073 0.011 5.6 x 10-11 C14orf64

rs987514 14 97,698,696 T 0.436 -0.069 0.011 4.5 x 10-10 C14orf64

rs10782490 14 97,619,136 C 0.471 -0.066 0.011 2.7 x 10-9 C14orf64

rs22225442 14 97,692,347 C 0.323 -0.071 0.012 1.2 x 10-8 C14orf64

rs17773233 14 97,652,412 T 0.225 -0.074 0.013 2.1 x 10-8 C14orf64

rs1461587 14 97,673,604 G 0.256 -0.070 0.013 1.5 x 10-7 C14orf64

rs1381273 14 97,718,813 T 0.469 -0.059 0.011 1.9 x 10-7 C14orf64

rs10764094 10 19,950,544 C 0.473 0.057 0.011 2.4 x 10-7 C10orf112

rs8015529 14 97,571,972 G 0.359 -0.066 0.013 2.5 x 10-7 C14orf64

rs4778983 15 80,290,133 C 0.301 0.057 0.012 1.5 x 10-6 EFTUD1

rs7161307 14 97,677,436 T 0.215 -0.065 0.013 1.7 x 10-6 C14orf64

rs6485690 11 46,755,207 A 0.308 -0.056 0.012 3.0 x 10-6 CKAP5†

rs10740923 10 19,907,637 G 0.464 -0.052 0.011 3.9 x 10-6 C10orf112

rs7959220 12 95,117,079 G 0.027 0.266 0.059 6.3 x 10-6 ELK3

rs6472483 8 70,791,920 T 0.452 -0.050 0.011 7.1 x 10-6 SLCO5A1

rs6101837 20 38,155,981 C 0.416 -0.050 0.011 7.5 x 10-6 MAFB

rs10827649 10 19,949,776 G 0.436 -0.049 0.011 8.6 x 10-6 C10orf112

rs6947805 7 121,844,471 T 0.050 0.117 0.026 9.5 x 10-6 CADPS2

*Individual analyses were adjusted for age, age2, sex, height and weight.  

†LD block includes ARHGAP1, ZNF408, F2, CKAP5 and LRP4.
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Discussion

We performed a meta-analysis of GWAS results for CFPWV from 9 community-based cohorts 

involving 20,634 participants spanning a broad age range and identified a locus of genome-wide 

significant association in an apparent gene desert on 14q32.2. This finding was replicated in 2 

additional cohorts involving 5,306 participants. We identified a conserved sequence within the 

region of significant association surrounded by a cluster of primate-specific, noncoding RNAs 

(ncRNAs).  We evaluated 2 of these ncRNAs, which have at least one associated SNP within an 

exon, and demonstrate that they are expressed in relevant human cardiac and vascular tissues 

and cell lines, including full thickness aortic rings, aortic smooth muscle cells, cardiac fibroblasts 

and HUVECs.  In light of the putative role of the region of significant association as a gene 

enhancer,17-19 we also assayed for and demonstrated expression of flanking known genes, BCL11B 

and VRK1, in the same tissues and cell lines.  Our findings indicate that the VRK1-BCL11B gene 

desert harbors a regulatory locus that modulates aortic stiffness. The association was consistent 

in younger and older participants, suggesting that the effects on CFPWV of genetic variation at this 

locus manifest early in life, prior to the marked increase in CFPWV that occurs from midlife onward.  

In addition, we demonstrated that the locus is associated with increased risk for cardiovascular 

disease, consistent with the hypothesis that increased aortic stiffness, as assessed by CFPWV, 

plays a causal role in the pathogenesis of cardiovascular disease. Further elucidation of potential 

mechanisms of aortic stiffening mediated through this locus may provide novel insights into the 

pathogenesis of aortic stiffening and could potentially offer insights into currently unavailable 

targeted interventions that prevent or attenuate aortic stiffening with advancing age and reduce 

the associated excess risk for major CVD events.

Prior studies provide strong evidence that the region of association with CFPWV that we have 

identified on 14q32.2 represents the core of a gene enhancer.  The region encompasses various 

regulatory features, including several DNAse-I hypersensitive sites and transcription factor binding 

sites and high levels of nuclear matrix attachment.20-22 Chromatin modifications in the region, 

including high levels of acetylation of histone 3 at lysine 27 (H3K27) and monomethylation at lysine 

4 (H3K4) assessed in a lymphoblastoid cell line, are consistent with enhancer function (http://

genome.ucsc.edu).23 Despite considerable genomic separation from the enhancer core (~1 MB 

telomeric), BCL11B is thought to be the primary target of the enhancer.24-26 BCL11B is located on 

the minus strand, positioning the enhancer in the remote 3’ region of the gene. The closest known 

gene in the opposite direction, VRK1, is ~1.1 MB centromeric to the enhancer core and is on the 

plus strand, again positioning the enhancer in the remote 3’ region of VRK1, suggesting that one or 

both genes could potentially be a target of the enhancer, although a CTCF binding site just to the 

VRK1-side of the enhancer region may represent an insulator that renders specificity to BCL11B 

(http://genome.ucsc.edu).
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In support of BCL11B as a target, numerous translocations have been described that insert 

fragments of 5q35 at various positions in a breakpoint cluster region that falls between the 

enhancer core and 3’ BCL11B. These translocations interpose the homeobox genes TLX3 or 

NKX2-5 between the enhancer and 3’ BCL11B and result in ectopic activation of the homeobox 

gene, dysregulated T-cell proliferation and acute T-cell lymphoblastic leukemia.27-29 T-cell 

regulatory signals directed at BCL11B may interact with the enhancer to drive ectopic activation of 

the interposed homeobox gene, leading to cell-specific malignant transformation.  Su et al. used 

translocation data to map enhancer function to a 58 kB segment of the genome that corresponds 

to the telomeric shoulder of our locus of significant association with CFPWV.30  Relative proximity 

of the enhancer to BCL11B, the important role that BCL11B plays in T-cell development and the 

T-cell specificity of malignant transformations involving translocations into the region support the 

hypothesis that BCL11B is a primary target of this enhancer.

BCL11B codes for chicken ovalbumin upstream promoter transcription factor (COUP-TF) interacting 

protein 2 (CTIP2), which is a cofactor in the COUP-TF family of transcription factors31 and a direct 

transcriptional repressor.32  There are several potential mechanisms for an effect of BCL11B on 

aortic stiffness. COUP-TFII (NR2F2) modulates the angiopoietin-1 and vascular endothelial growth 

factor pathways and plays a critical role in the development of the heart and great vessels.33  In 

addition, BCL11B is a C2H2 zinc finger protein that can directly bind DNA in a sequence specific 

manner and effect transcriptional repression independent of COUP-TF family members.34  Direct 

transcriptional repression mediated by BCL11B involves trichostatin-A insensitive deacetylation 

of histones in repressed genes.  A key binding partner in this BCL11B-mediated gene silencing 

is the class III histone deacetylase SIRT1, the mammalian ortholog of the yeast SIR2 gene 

product, a key regulator of aging at the cellular and whole organism level in diverse species.35,36  

Acting directly and in concert with SIRT1, BCL11B mediates antiapoptotic modulation of gene 

expression at several levels.  With SIRT1 as a cofactor, BCL11B represses the expression of the 

proapoptotic cyclin-dependent protein kinase inhibitors p21 (CDKN1A) and p57 (CDKN1C).37,38  In 

addition, BCL11B represses heme oxygenase-1 (HMOX1),39 which is a stress inducible gene that 

enhances proapoptotic effects of the cell cycle regulator p53 (TP53) in vascular smooth muscle 

cells.40  BCL11B also represses expression of the matrix protein fibronectin (FN1) and the adhesion 

molecule cadherin 10 (CDH10).41  Furthermore, BCL11B appears to be expressed in the aorta 

at day 14.5 in developing mouse embryos (although this observation was not discussed).42  Our 

findings suggest that variants in the region of association that we have identified may interfere 

with transcription factor binding in the enhancer region or may alter the function or expression 

of regulatory ncRNAs in the region. If these variants reduce expression of BCL11B, altered aortic 

development, reduced activity of SIRT1, increased expression of proapoptotic factors, fibronectin 

or cadherin or alterations in additional as yet unidentified targets may contribute to increased aortic 

stiffness.
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In addition to direct effects of BCL11B on aortic function, there are potential indirect effects 

mediated through the known role that BCL11B plays in immune cell function.  T-cell specific 

deletion of BCL11B at the CD4+ single positive stage is associated with increased numbers of 

proinflammatory TCRα/β double negative T-cells.43  Periaortic fat is infiltrated with this same class 

of proinflammatory T-cells in angiotensin induced models of hypertension.44  Thus, a genetic 

variant that attenuates expression of BCL11B could potentially enhance proliferation of and tissue 

infiltration by proinflammatory TCRα/β DN T-cells, leading to abnormal aortic stiffness.

Similarly, there are mechanisms whereby VRK1, which we have shown is expressed in aortic 

tissue, could potentially modulate aortic properties.  In distinct contrast to BCL11B, VRK1 has 

primarily proapoptotic and prosenescence effects, mediated in large part through phosphorylation 

of threonine 18 of p53, leading to reduced ubiquination and increased nuclear levels of p53.45  

Recent work has shown that exercise training, which is an effective intervention to reduce aortic 

stiffness,46 is a potent inhibitor of aortic p53 activity and is associated with improved endothelial 

function and resistance to stress-induced endothelial cell senescence and apoptosis.47  Thus, 

enhanced activity of VRK1, leading to stabilization of p53 levels, could have an adverse effect on 

aortic stiffness.

The contrasting effects of BCL11B and VRK1 on cell cycle regulation and nearly equidistant location 

from the enhancer region located in the intervening gene desert raise the possibility that this 

regulatory region may modulate the balance between cell survival or senescence and apoptosis.  

The entire segment spanning from VRK1 to BCL11B, including the intervening 2 MB gene desert 

is duplicated on chromosome 2 as VRK2 and BCL11A, suggesting that the genomic architecture 

between these 2 gene pairs may have an important effect on function of one or both genes.  SNPs 

in both gene deserts have been associated with Type I and Type II diabetes.48,49  Thus, transcription 

factors or other signaling molecules acting at a single enhancer locus between VRK1 and BCL11B 

could potentially negatively or positively modulate cell survival and thereby alter aortic stiffness and 

other aging phenotypes, such as diabetes or coronary artery disease.50

We demonstrated that two overlapping ESTs that fall completely within the region of highly 

significant association with CFPWV are expressed in aortic tissue and cell lines.  These primate-

specific, potentially regulatory ncRNAs overlap the conserved sequence and are expressed in 

cDNA extracts from full thickness human aortic rings and various human cell lines, including aortic 

smooth muscle cells, HUVECs and cardiac fibroblasts.  One of the highly associated SNPs in 

the region (rs710285) is located in an exon of DB129663, suggesting a possible functional effect.  

The enhancer core region mapped by Su et al. corresponds to the putative promoter region 

of DB129663.  Thus, enhancer function at our chromosome 14 locus may specifically target 

DB129663, which appears to be a ncRNA of unknown function, rather than BCL11B.  Additional 

work will be required to test this hypothesis and further define the function of DB129663.
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To assess the potential importance of the many borderline associations that we found with 

CFPWV, we compared our results to published results for echocardiographic measures51 and 

stroke,52 which are related to arterial stiffness.  Published results included several of the cohorts in 

our consortium (AGES, FHS, RS-I, RS-II).  The strongest evidence for potential overlap was found 

in a long LD block spanning from approximately 46.68 to 47.20 MB on chromosome 11.  This 

genomic region encompasses numerous SNPs that showed moderate evidence of association 

with stroke and CFPWV.  There are 5 missense SNPs in LRP4 and one in the thrombin gene 

(F2) in this region.  The SNP in this region with the lowest P value for association with stroke 

(rs10734548) is an intronic SNP in CKAP5 that also showed moderate association with CFPWV (P 

= 1.25 x 10-4).  This SNP is in high LD with a nonsynonymous SNP in LRP4 (rs3816614, r2 = 0.93, 

CEU HapMap release 22).  Similarly, the SNP in this region with the lowest P value for association 

with CFPWV (rs6485690, Table 2) is an intronic SNP in CKAP5, which is in high LD with another 

nonsynonymous SNP in LRP4 (rs6485702, r2 = 0.95, CEU HapMap release 22).  Two additional 

nonsynonymous SNPs in LRP4 (rs2306029 and rs2306033) were associated with CFPWV.  In 

each case, the minor allele was associated with higher CFPWV and increased risk for stroke, 

consistent with the known relation between arterial stiffness and stroke.3  

Several additional SNPs with suggestive associations to CFPWV (10-8 < P < 10-5) may merit 

further consideration and additional replication genotyping.  The locus on chromosome 10 with the 

second lowest P-value in our GWAS meta-analysis lies in the vicinity of a putative protein coding 

gene that may represent a novel member of the low density lipoprotein receptor-related protein 

(LRP) family,53 which is interesting in light of the additional moderate evidence of association that 

we found with LRP4 in the present analysis and prior reports of association with stroke52 and 

bone mineral density.54;55  The CFPWV association with LRP4 includes a nonsynonymous SNP 

(rs6485702) that has been related to bone mineral density,56 although a separate report involving 

several of our cohorts positioned the region of highest association with bone mineral density in 

the promoter region of ARHGAP1.57  Bone density and arterial stiffness are related phenotypes 

that share many common pathways.58  The recently observed inhibitory role that LRP4 plays in 

Wnt signaling in bone59 coupled with the adverse effects of Wnt signaling in the aorta60 suggests 

that a mutation that impairs the ability of LRP4 to modulate the Wnt signaling cascade could 

simultaneously contribute to osteopenia and aortic stiffening.  The chromosome 11 locus that 

encompasses LRP4 and additional potential candidates, including ARHGAP1 and F2, represents 

a long LD block that was also associated with stroke in a prior meta-analysis that included several 

of the cohorts in our study.  The direction of effect in the prior study (higher risk for the minor allele) 

and ours (stiffer aorta with the minor allele) was consistent with the known association between 

increased CFPWV and increased risk for stroke.3  In addition, a prior family-based linkage analysis 

for myocardial infarction found a single significant linkage peak in the vicinity of our association 

peak on chromosome 14.61  These regions of overlap with prior results involving separate but 

related phenotypes support the clinical relevance of our associations and suggest that several 

genetic variants that impact CFPWV may eventually manifest as age-related morbidity and major 

cardiovascular events.
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We also attempted to replicate a previously reported association of CFPWV with a SNP in the 

COL4A1 gene in the only published GWAS that has evaluated CFPWV.62  The present results found 

modest evidence of association with some heterogeneity of effect, suggesting that additional work 

will be required to determine whether variation in LD patterns or other factors could potentially 

account for heterogeneous effects at this locus.

There are limitations of our study that should be considered.  The cohorts comprised exclusively 

white participants of European descent.  Thus, our findings may not generalize to other populations.  

Slightly different methods were used to assess CFPWV in the various cohorts.  However, our 

use of standardized residuals generated within each cohort should have minimized the effects 

of these technical differences between studies.  A major strength of our study is the use of data 

from 11 large community-based cohorts that routinely ascertained CFPWV, which should enhance 

generalizability of our findings.

In conclusion, we performed the first large scale GWAS of CFPWV, which is a moderately heritable 

measure of aortic stiffness and important risk factor for cardiovascular events.  We identified a 

highly significant locus of association at 14q32.2 in the VRK1-BCL11B gene desert in an LD block 

that corresponds to the core of a gene enhancer that is thought to target BCL11B.  We have also 

shown that genetic variation at this locus is associated with increased risk for major CVD, providing 

strong support for the hypothesis that increased CFPWV contributes to the pathogenesis of CVD.  

We have shown that 2 potentially regulatory ncRNAs surrounding a conserved sequence, as well 

as flanking genes, BCL11B and VRK1, are expressed in human aorta.  Downstream targets of 

BCL11B and VRK1, including FN1, HMOX1 and p53, are known to be involved in aortic function.  

Further work will be required to define precise mechanisms mediating the association between 

CFPWV and genetic variation in the VRK1-BCL11B gene desert.  Elucidation of pathways affected 

by this locus will provide new insights into the process of aortic stiffening in humans and could yield 

potential targets for specific interventions that reverse or attenuate aortic stiffening and prevent the 

associated morbidity and mortality.
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Arterial stiffness and hypertension in a large population of untreated subjects. 

The Rotterdam Study.

Accepted Journal of Hypertension 



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 117

Arterial stiffness and hypertension

Abstract

Background

We studied whether arterial stiffness measured as aortic pulse wave velocity (aPWV) and carotid 

distensibility, was associated with different subtypes of hypertension in a large population of 

untreated middle-aged and elderly men and women. 

Methods

The study was conducted within the framework of the population-based Rotterdam Study. 

We included 4088 subjects with information on aPWV, with among these 3554 subjects with 

carotid distensibility measurements without use of anti-hypertensive medication. Isolated systolic 

hypertension (ISH) was defined as systolic blood pressure ≥140 mmHg and diastolic blood 

pressure <90 mmHg. Combined systolic and diastolic hypertension (Sys/Dia HT) was defined 

as systolic blood pressure ≥140 mmHg and diastolic blood pressure ≥90 mmHg. ANCOVA was 

used to compare means of arterial stiffness for the different subtypes of hypertension. Multinomial 

logistic regression analysis was performed to investigate the association of arterial stiffness and 

the subtypes of hypertension in models adjusted for age, sex, mean arterial pressure, heart rate 

and cardiovascular risk factors.

Results

The mean age of the subjects was 68 years, 45.3% was men, 1597 subjects had ISH and 441 

subjects had Sys/Dia HT. Aortic PWV was higher (13.2 m/s vs. 12.9 m/s; P=0.008) in subjects with 

ISH compared to subjects with Sys/Dia HT. Multivariate odds ratio’s (OR) and corresponding 95% 

CI of aPWV, for ISH were 1.53 (1.38-1.71) and  1.28(1.09-1.53) for Sys/Dia HT. Corresponding ORs 

associated with carotid distensibility were 0.84 (0.75-0.94) and 0.66 (0.54-0.81), respectively. Age 

significantly modified the association of aPWV with subtypes of hypertension (p<0.001). 

Conclusions

In a large untreated population, we found significant associations of both aPWV and carotid 

distensibility with ISH and Sys/Dia HT. Subjects with ISH had higher values of aortic stiffness when 

compared  to subjects with Sys/Dia HT, a difference that was most pronounced at older age. 

The results suggest that aortic stiffness contributes to ISH in older subjects without treatment for 

hypertension. 
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Introduction

Hypertension is a common and well established risk factor for cardiovascular disease1. The 

prevalence of hypertension increases with advancing age. Isolated systolic hypertension (ISH) 

is the most frequent type of hypertension in the elderly2. This is due to the continuous increase 

in systolic blood pressure with advancing age whereas diastolic blood pressure tends to remain 

constant or declines with advancing age, indicating a patent regulation of mean arterial pressure3. 

The most likely explanation for the age related  rise in systolic blood pressure and fall in diastolic 

blood pressure is large artery stiffening3. Indeed, several studies have shown that a specific 

measure of arterial stiffness, i.e. aortic pulse wave velocity (aPWV), is increased in subjects with 

ISH compared to controls4,5, while carotid distensibility shows a decline. This relation has been 

confirmed in young adults6 and elderly women7. Furthermore, aPWV has been shown to be an 

independent predictor of the longitudinal increase in systolic blood pressure8 and is associated 

with subsequent cardiovascular morbidity and mortality9,10. 

Previous studies included relatively small groups of subjects and there is limited information on 

the relation of arterial stiffness with ISH in different age categories of healthy untreated subjects. 

Furthermore, the relation of arterial stiffness with the different types of hypertension, including 

ISH and combined systolic and diastolic hypertension (Sys/Dia HT), has not been fully elucidated. 

Therefore, we studied whether two measures of arterial stiffness, aPWV and carotid distensibility, 

were associated with ISH and Sys/Dia HT in a large population of untreated subject. We additionally 

investigated whether the association was different in categories for age.
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Methods 

Study population

The present study was performed within the framework of the Rotterdam Study (RS), a large 

population-based prospective cohort study. From 1990 to 1993, 7983 subjects aged 55 and over 

living in Ommoord, a suburb of Rotterdam, the Netherlands participated  in the Rotterdam Study 

(RS-1). In 1999, inhabitants who turned 55 years of age or moved into the study district since the 

start of the study were invited to participate in an extension of the Rotterdam Study (RS-II) of whom 

3011 participated. The overall aim of the Rotterdam Study is to access the occurrence of  risk 

factors for chronic diseases in the elderly. The study design and objectives of the Rotterdam Study 

are described elsewhere11. The Medical Ethics Committee of Erasmus Medical Center approved 

the study and written consent was obtained from all participants.                                                                                                                      

Measures of arterial stiffness

Aortic pulse wave velocity

The aPWV was obtained with subjects in supine position. Before the aPWV measurement, blood 

pressure was measured twice with a sphygmomanometer after five minutes of rest and the mean 

was taken. The aPWV was assessed with an automatic device (Complior® Artech Medical, Pantin 

– France)12 that measures the time delay between the rapid early upstroke of the pulse pressure 

waves recorded simultaneously in the carotid artery and the femoral artery. The distance between 

the recording sites in the carotid and the femoral artery was measured with a tape over the surface 

of the body. The aPWV was calculated as the ratio between distance and the foot-foot time delay 

and was expressed in meter per second.

Carotid distensibility

Common carotid distensibility was assessed with the subjects in supine position, with the head 

tilted slightly to the contralateral side for the measurement in the common carotid artery. The 

vessel wall motion of the right common carotid artery was measured by means of a duplex scanner 

(ATL Ultramark IV, operating frequency 7.5 MHz) connected to a vessel wall movement detector 

system. The details of this technique have been described elsewhere13. After 5 minutes of rest, a 

region at 1.5 cm proximal to the origin of the bulb of the carotid artery was identified with the use 

of B-mode ultrasound, where after the system was switched to M-mode. The displacement of the 

arterial walls was obtained by processing the radiofrequency signals originating from two selected 

sample volumes positioned over the anterior and posterior walls. The end-diastolic diameter (D), the 

absolute stroke change in diameter during systole (∆D), and the relative stroke change in diameter 

(∆D/D) were computed as the mean of 4 cardiac cycles of 3 successive recordings. The cross-

sectional arterial wall distensibility coefficient, expressed in MPa-1, was calculated according to 

the following equation: distensibility coefficient=2∆D/ (D × pulse pressure)14 with pulse pressure  

defined as the difference between systolic and diastolic blood pressure. 

In a reproducibility study performed among 47 subjects, the intraclass correlation coefficient was 

0.80 for both the aPWV and the carotid distensibility coefficient15.
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Blood pressure measurements

Two blood pressure measurements were obtained at the right brachial artery with a random zero 

sphygmomanometer after the subject had been seated for at least five minutes. Systolic blood 

pressure, first Korotkoff phase and diastolic blood pressure, fifth Korotkoff phase, were obtained 

and  the mean of the two blood pressure values was used in the analyses. Normotensive  was 

defined as systolic blood pressure  ≤140 mmHg and  diastolic blood pressure  ≤90 mmHg. ISH 

was defined as systolic blood pressure  ≥140 mmHg and diastolic blood pressure ≤ 90 mmHg16. 

Sys/Dia HT was defined as systolic blood pressure  ≥ 140 mmHg and diastolic blood pressure ≥ 

90 mmHg.  Mean arterial pressure was estimated as MAP= DBP + PP/3.

Cardiovascular risk factors

Information on medical history, smoking habits and medication use was obtained during a home 

interview. Smoking was divided into three categories: current, former and never smokers. During 

the research center visit, height and weight were measured, and the body mass index (BMI) was 

computed (kg/m2). Diabetes mellitus was defined as a history of diabetes mellitus and/or the use 

of blood glucose lowering medication and/or a fasting serum glucose level ≥7.0 mmol/l17. Serum 

total cholesterol and high-density lipoproteins (HDL) cholesterol values were determined by an 

automated enzymatic procedure (Boehringer Mannheim System, Mannheim, Germany)18. 

Prevalent coronary heart disease

A history of coronary heart disease (CHD) was obtained through direct questioning and was 

considered positive when confirmed according to hospital discharge date or written information 

from the subject’s general practitioner, as described previously19. CHD was defined  myocardial 

infarction (MI), a percutaneous transluminal coronary angioplasty, a coronary artery bypass graft. 

A history of MI was considered present in case of self-report of MI confirmed by electrocardiogram 

or additional clinical information or the presence of an electrocardiogram characteristic of prior MI.

Population for analysis

During the third examination phase of RS-I (1997-1999) and during the first examination phase of 

RS-II (2000-2001), a computerized questionnaire was completed and cardiovascular risk factors 

and arterial stiffness were assessed. In total 6938 subjects visited the research center. Measures of 

both blood pressure levels and aortic pulse wave velocity (aPWV) were obtained in 5773 subjects, 

and among these, 4640 subjects had a measurement for carotid distensibility.

We excluded subjects with use of anti-hypertensive medication (n=1309) and subjects with missing 

covariate information (n=376), resulting in 4088 subjects for analyses with aPWV. Among these 

3554 subjects were available for carotid distensibility analyses. Missing information was primarily 

due to logistic reasons.
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Statistical analysis 

Mean values of systolic, diastolic, mean arterial and pulse pressure, aPWV and carotid distensibility 

in different age categories were plotted in figures. ANCOVA was used to compare age, gender, 

aPWV and carotid distensibility between subtypes of hypertension categories, i.e. normotensive, 

ISH and Sys/Dia HT. Multinomial logistic regression models were performed to investigate the 

association of standardized cardiovascular risk factors and standardized values of aPWV and 

carotid distensibility with subtypes of hypertension. Standardized values were obtained by dividing 

each measure by its standard deviation. The models were adjusted for age, gender, cohort, body 

mass-index, total cholesterol, high-density cholesterol, smoking, diabetes mellitus, and for  mean 

arterial pressure and heart rate, when appropriate. We tested for interaction by age, gender,  

diabetes mellitus and prevalent cardiovascular disease. If the interaction term was significant 

we performed stratified analyses. ANCOVA was used to compare means of arterial stiffness 

in subtypes of hypertension by age categories, adjusted for age, gender, cohort, mean arterial 

pressure, heart rate and cardiovascular risk factors, when appropriate. For descriptive purposes 

we generated figures with mean values of measures of arterial stiffness in the age categories 

for subjects in the different hypertension categories. P-values less than 0.05 were considered 

statistically significant. All analyses were performed using SPSS 15.0 statistical package for 

Windows 2003 (SPSS, INC., Chicago, Illinois, USA).
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Results

The baseline characteristics of the study population are shown in table 1. The mean age of the 

study population was 68.1 years and the percentage men were 45.3%.

Table 1: Baseline characteristics of the study participants in untreated subjects (n=4088) 

Characteristics Total (n=4088)

Mean ± SD or percentage

Age (years) 68.1 ± 8.1

Men (%) 45.3

Systolic blood pressure (mmHg) 141 ± 20

Diastolic blood pressure (mmHg) 76 ± 11

Mean arterial pressure (mmHg) 98 ± 12

Pulse pressure (mmHg) 65 ± 17

Heart rate (bpm) 74 ± 13

Body mass index (kg/m2) 26.5 ± 3.8

Total cholesterol (mmol/l) 5.83 ± 1.00

High-density lipoprotein cholesterol (mmol/l) 1.41 ± 0.39

Current smokers (%) 18.7

Diabetes mellitus (%) 11.1

Aortic pulse wave velocity (m/sec) 12.8 ± 3.0

Carotid distensibility coefficient (MPa-1)* 12.0 ± 4.8

Prevalent CHD (%) 8.9

SD: standard deviation; n: number

* available for 3554 subjects
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With increasing age there is an increase in systolic blood pressure and pulse pressure, a decrease 

in diastolic blood pressure and no change in mean arterial pressure (Figure 1a). There is an increase 

in aPWV and decrease in carotid distensibility with age (Figure 1b). Of the 4088 subjects in this 

study, 1597 (39.1%) subjects had ISH and 414 (10.1%) subjects had Sys/Dia HT. Subjects with ISH 

were older compared to normotensives and subjects with Sys/Dia HT (p <0.001). 

Figure 1b. Pulse wave velocity and carotid distensibility in categories of age 

SBP Systolic blood pressure; DBP diastolic blood pressure; MAP mean arterial pressure; PP pulse pressure; 

aPWV aortic pulse wave velocity; DC; Carotid distensibility coefficient

 

Figure 1a. Blood pressure components in age categories
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Of the traditional cardiovascular risk factors, age (per standard deviation; OR 1.78; 95% CI 1.64-

1.94), body mass index (per standard deviation; OR 1.26; 95% CI 1.17-1.35) and diabetes mellitus 

(OR 1.54; 95% CI 1.23-1.93) were strongly associated with ISH. Male gender (OR 1.68; 95% CI 

1.33-2.13), body mass index (per standard deviation; OR 1.45; 95% CI 1.30-1.61) and diabetes 

mellitus (OR 1.53; 95% CI 1.10-2.14) were strongly associated with Sys/Dia HT. Age was only 

weakly associated with Sys/Dia HT (per standard deviation; OR 1.14; 95% CI 0.99-1.30) (Table 2).

APWV and carotid distensibility were strongly associated with both ISH and Sys/Dia HT. OR’s and 

corresponding 95% CI of aPWV, after adjustment for cardiovascular risk factors, were 1.53 (1.38-

1.71) for ISH and 1.28 (1.09-1.53) for Sys/Dia HT. OR’s for carotid distensibility were 0.84 (0.75-

0.94) for ISH and 0.66 (0.54-0.81) for Sys/Dia HT (Table 2).

Table 2: Odds ratio’s for ISH and Sys/Dia HT associated with cardiovascular risk factors 

and measures of arterial stiffnessrs (per 1-sd 

Odds Ratio, 95% CI

ISH (n= 1597)

Odds Ratio, 95% CI

Sys/Dia HT (n=414)

Age 1.78 (1.64-1.94) 1.14 (0.99-1.30)

Male gender 1.11 (0.96-1.30) 1.68 (1.33-2.13)

Body mass index 1.26 (1.17-1.35) 1.45 (1.30-1.61)

Total cholesterol 1.06 (0.98-1.13) 1.04 (0.93-1.17)

High-density cholesterol 0.97 (0.90-1.05) 1.03 (0.91-1.16)

Current smoking 0.82 (0.69-0.98) 0.72 (0.54-0.97)

Diabetes mellitus 1.54 (1.23-1.93) 1.53 (1.10-2.14)

Aortic pulse wave velocity* 1.53 (1.38-1.71) 1.28 (1.09-1.53)

Carotid distensibility* 0.84 (0.75-0.94) 0.66 (0.54-0.81)

Multinomial logistic regression with normotensives as reference outcome category

All models are adjusted for age, gender, cohort, body mass-index, total cholesterol, high-

density cholesterol, smoking and diabetes mellitus, when appropiate

* �additionally adjusted for mean arterial pressure and heart rate

CI confidence interval; ISH isolated systolic hypertension; Sys/Dia HT=combined systolic and 

diastolic hypertension 

After adjustment for age, gender, mean arterial pressure and heart rate, subjects with ISH had 

higher aPWV values, compared to normotensives (p<0.001) and subjects with Sys/Dia HT 

(p=0.008). Subsequently, had subjects with ISH lower carotid distensibility values compared to 

normotensives, but compared to subjects with Sys/Dia HT there was no difference (p = 0.071) 

(Table 3).  
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Table 3: Measures of arterial stiffness in subtypes of hypertension. 

Normotensive ISH Sys/Dia HT

N (%) 2077 (50.8) 1597 (39.1) 414 (10.1)

Age (years) 66.6 70.5 *‡ 66.7

Male gender (%) 43.6 45.1‡ 54.6 *

aPWV (m/s) 12.5 13.2 *‡ 12.9 †

DC (1/MPa) 12.4 11.8 * 11.3 *

Models are adjusted for age, gender, mean arterial pressure and heart rate, when appropriate.

* significantly different from normotensive at p<0.001

† significantly different from normotensive at p<0.05

‡ significantly different from Sys/Dia HT at p<0.05

aPWV aortic pulse wave velocity; DC carotid distensibility coefficient; Sys/Dia HT combined 

systolic and diastolic hypertension; ISH isolated systolic hypertension

Age significantly modified the relation between aPWV and subtypes of hypertension (p=0.001), 

this was not the case for the relation between carotid distensibility and subtypes of hypertension 

(Table 4). Aortic PWV increased with increasing age for all subtypes of hypertension (Figure 2), this 

increase was stronger among normotensives and among subjects with ISH compared to subjects 

with Sys/Dia HT resulting in higher mean values in subjects with ISH compared to subjects with 

Sys/Dia HT.

There was no significant interaction between arterial stiffness and subtypes of hypertension 

according to categories of gender, diabetes mellitus and previous CHD. 

Figure 2. Pulse wave velocity by age in different subtypes of hypertension.

aPWV: aortic pulse wave velocity; NT normotension;  ; ISH isolated systolic hypertension; Sys/Dia HT=combined 

systolic and diastolic hypertension 
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Discussion

In the present study performed in a large middle-aged and elderly untreated population, we found 

significant associations of both aPWV and carotid distensibility with ISH and Sys/Dia HT. Subjects 

with ISH had higher values of aortic stiffness when compared to subjects with Sys/Dia HT. The 

difference was largest among older subjects. 

The main finding of this paper was that subjects with ISH have a stiffer aorta, as measure with 

aPWV, than subjects with Sys/Dia HT. Franklin et al3 showed already two decades ago that there 

is a reduction of diastolic blood pressure after age 60 and an increase in systolic blood pressure, 

resulting in a steep increase of pulse pressure. The most likely explanation is the age related 

stiffening of the aorta. This has been confirmed in several cross sectional studies, showing that 

subjects with ISH have higher values of arterial stiffness compared to normotensive subjects4,5 

and  has also been confirmed in young adults and elderly women7. Furthermore, it is traditionally 

believed that arterial stiffening is accelerated by higher mean and systolic blood pressures because 

of structural and functional alterations in the walls of the central elastic arteries in response to the 

chronically elevated distending pressures20. Recently, the Baltimore Longitudinal Study of Aging 

(BLSA) showed prospectively that arterial stiffening precedes and predisposes to accelerated 

longitudinal increases in systolic blood pressure and to future hypertension, suggesting that 

arterial stiffening is an underlying pathophysiological cause of the increase in pressure8. 

Interestingly, we found a higher value of carotid distensibility in subjects with ISH than compared with 

subjects with Sys/Dia HT, indicating more elastic carotid arteries in subjects with ISH compared to 

subjects with Sys/Dia HT. You might speculate about this difference in carotid stiffness compared 

to aortic stiffness. The arterial tree is not a homogenous system and there are differences in 

the structure and function of various arteries. Carotid distensibility is a local measure of carotid 

stiffness, whereas aPWV is a more regional measure of arterial stiffness, combining the central 

elastic aorta and more muscular illiaca and femoral arteries21. Although carotid femoral pulse wave 

velocity and carotid stiffness provide similar information on the impact of aging on large artery 

stiffness in normal subjects, this is not the case for subjects with cardiovascular risk factors, such 

as hypertension and diabetes mellitus. The influence of hypertension on the different parts of the 

arterial tree has been shown in a paper by Laurent et al, in which there is a reduced distensibility 

in the proximal large arteries compared to the medium-sized distal arteries22. In subjects with 

type 1 diabetes mellitus, there is an alteration of aortic distensibility earlier in disease process, 

compared to carotid distensibility23. In addition, it has been shown that the correlation between 

aortic stiffness and carotid stiffness becomes weaker as the number of cardiovascular risk factors 

increase. The discrepancies between aortic stiffness and carotid stiffness result from different 

influences of cardiovascular risk factors on both parameters24. 
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Table 4: Mean values of aPWV and carotid distensibility in subtypes of hypertension 

according to age 

n Normotensive

aPWV*

ISH

aPWV*

Sys/Dia HT

aPWV*

Age 

<60 422/186/84 11.0 ± 0.10 11.7 ± 0.14† 11.8 ± 0.24†

60-70 1035/601/203 11.9 ± 0.07 12.6 ± 0.09† 12.3 ± 0.16

>70 620/810/127 14.0 ± 0.12 14.7 ± 0.10† 14.2 ± 0.26

n Normotensive

DC*

ISH

DC*

Sys/Dia HT

DC*

Age 

<60 369/161/76 15.4 ± 0.24 14.5 ± 0.34† 13.8 ± 0.57†

60-70 927/508/173 13.2 ± 0.13 13.0 ± 0.17 12.5 ± 0.31

>70 552/676/112 9.9 ± 0.13 9.2 ± 0.12† 9.2 ± 0.29†

*Adjusted mean ± standard error.  Model is adjusted for age, gender, cohort, body mass-

index, 

total cholesterol, high-density cholesterol, smoking and diabetes mellitus 

† significantly different from normotensive at p<0.05

ISH: isolated systolic hypertension; Sys/Dia HT: combined systolic and diastolic hypertension; 

aPWV: aortic pulse wave velocity; DC: Carotid distensibility coefficient; 

n: number of subjects, normotensives, subjects with ISH, subjects with Sys/Dia HT, 

respectively per age categories

We confirmed previous observations that with increasing age there is a rise of systolic blood 

pressure and pulse pressure and a reduction of diastolic blood pressure, implying that ISH is the 

most prevalent form of hypertension in elderly3. Increasing age is also associated with increased 

arterial stiffness even in healthy normotensive individuals, confirming previous observations that 

ISH is primarily associated with stiffening of the central arteries4,5,7. The association remained after 

correction for mean arterial pressure, suggesting an increase in isobaric stiffness rather than a 

passive rise because of an increase in mean pressure25,26. Proposed mechanisms underlying 

arterial stiffening include degeneration of elastin, endothelial wall dysfunction and calcium 

deposition in the vascular wall27. Enzymes degrading elastin, including MMP-9, MMP-2 and 

various serine proteases, were all correlated with aortic stiffness28, suggesting that extracellular 

matrix remodeling contributes to stiffening of the aorta. Wallace et al. showed that endothelial 

function was independently associated with aortic stiffness4 and several studies have shown that 

calcification was correlated with stiffer central arteries29,30. 
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We found an age-dependency of the relation of aortic stiffness with  ISH and Sys/Dia HT. We 

found a stronger age-related increase of aortic stiffness in subjects with ISH when compared with 

subjects with Sys/Dia HT. Interestingly, the aorta of the very old subjects with Sys/Dia HT was as 

stiff as the aorta of normotensive subjects. The main physiological abnormality in the Sys/Dia HT 

is an increased MAP concomitant with a higher peripheral vascular resistance. Although, previous 

studies have shown that central ‘elastic’ arteries are also stiffer in subjects with Sys/Dia HT 31,32, it 

is less clear whether this increased aortic stiffness is simply due to the higher operating pressure 

of hypertensive arteries. Studies, in which mean pressure was reduced, showed a normalization of 

aortic stiffness values, suggesting that isobaric stiffness was normal in hypertensive subjects33,34. 

The finding of this paper reinforces the hypothesis that Sys/Dia HT is not a pathophysiological 

result of stiff arteries.

Several issues regarding the methods of the present study need to be discussed. First,  the 

measures of stiffness were not available for all the participants; it might be that information 

was missing mostly in those subjects with a higher cardiovascular risk load,  though missing 

information was mostly due to logistic reasons and therefore mostly random. Second, the 

measurements of aortic and carotid stiffness were performed only once; it is likely that the use 

of multiple measurements would have improved accuracy and precision. Third, in computing the 

carotid distensibility coefficient, we used the brachial pulse pressure rather than the carotid pulse 

pressure. Information on comparisons between carotid and brachial pulse pressures indicates 

that the difference between these pressures is 8 mmHg in a presumed healthy population and 2.6 

mmHg in patients with severe coronary artery disease35. These findings indicate that using brachial 

artery pulse pressure instead of carotid artery pulse pressure may have led to an underestimation 

of the distensibility, different in subjects with and without cardiovascular disease. This may lead to 

an underestimation of the association with disease. It has been suggested to derive carotid artery 

pulse pressure using brachial artery pulse pressure36. However, to perform this procedure brachial 

mean pressure should be directly measured, while in our study this was computed from blood 

pressure components. Fourth, we conducted an observational cross-sectional study; therefore 

we cannot determine the directionally of the observed associations. Finally, the present results are 

obtained in a Caucasian population and therefore cannot be extrapolated to other populations. 

In summary, in this population of untreated subjects, we found significant associations of both 

aPWV and carotid distensibility with ISH and Sys/Dia HT. Subjects with ISH had higher values 

of aortic stiffness when compared with subjects with Sys/Dia HT, which was primarily present in 

older subjects without treatment for hypertension.
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Abstract 

Background

Orthostatic hypotension is common in the elderly and has been associated with cardiovascular 

morbidity and mortality in studies performed in younger subjects. Aim of the present study was to 

investigate the prognostic role of orthostatic hypotension in the elderly.

Methods

The risk of coronary heart disease, stroke, heart failure and all-cause mortality associated with 

orthostatic hypotension, was investigated with Cox proportional hazard models in 5064 subjects 

of the Rotterdam study, a large ongoing population-based study, performed in subjects aged 55 

years and older. 

Results

At baseline, 901 subjects had orthostatic hypotension. During follow-up, 668 subjects had 

coronary heart disease (CHD) (mean follow-up 6.0 ± 3.5 years), and 1,835 subjects died (mean 

follow-up period 7.8 ± 3.8 years). Orthostatic hypotension increased the risk of CHD (hazard ratio 

(HR) 1.31, 95% confidence interval (CI) 1.08–1.57) and all-cause mortality (HR1.22, 95% CI 1.09–

1.36), in models adjusted for age and sex. The risk was slightly lower after additional adjustment 

for cardiovascular risk factors. In analyses stratified for age, the HRs for all-cause mortality were 

1.80 (95% CI 1.25–2.60), 1.13(0.89–1.42), and 1.27 (95% CI 1.11–1.44), in the first, second, and third 

tertile of age, respectively.

Conclusions

Orthostatic hypotension increases the risk of CHD and all-cause mortality in elderly people. The 

risk of CVD and mortality is strongest in younger and very old subjects.
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Introduction

Orthostatic hypotension is common in the elderly1-4 and is associated with syncope5,6, falls7, 

fractures and potential morbidity, leading to functional impairment and increased hospitalization8. 

Several studies have investigated the relation between orthostatic hypotension and cardiovascular 

diseases. Well-designed population-based prospective large cohort studies, have found that 

orthostatic hypotension increases the risk of stroke9, coronary heart disease10 (CHD) and mortality11 

in middle-aged subjects. Other studies have investigated the prognostic role of orthostatic 

hypotension in the elderly; however, results were contradictory3,12-15 or performed in specific 

categories of patients16-18. No previous study has investigated the relation between orthostatic 

hypotension and the risk of heart failure.

The aim of the present study is to investigate whether orthostatic hypotension increases the risk 

of primary cardiovascular disease and all-cause mortality in the elderly. The present study is 

performed within the framework of the Rotterdam study, a large population-based prospective 

ongoing study, which has included subjects aged 55 years and over at baseline.

Methods

Study Population

The Rotterdam study is a population-based prospective cohort study comprising 7,983 subjects 

aged 55 and over living in Ommoord, a suburb of Rotterdam, The Netherlands. Overall aim of 

the Rotterdam study is assessing the occurrence of and risk factors for chronic diseases in the 

elderly. The study design and objectives of the Rotterdam study are described elsewhere19. At 

baseline, a trained interviewer visited the 7983 subjects at home for a computerized questionnaire. 

Participants visited the research center for the baseline examination from March 1990 to July 

1993. During these visits at the research center, blood pressure measurements were obtained and 

established cardiovascular risk factors were measured. The Medical Ethics Committee of Erasmus 

Medical Center approved the study and written consent was obtained from all participants.

Previous Cardiovascular Disease and Cardiovascular Risk Factors

A history of CHD, stroke and heart failure was obtained through direct questioning and considered 

positive when confirmed by hospital discharge date or written information from the subjects 

general practitioner, as described previously20-22. CHD was defined as fatal or non-fatal myocardial 

infarction, a percutaneous transluminal coronary angioplasty, a coronary artery bypass graft, 

sudden cardiac death and death due to ventricular fibrillation and congestive heart failure. 

A history of myocardial infarction was considered present in case of self-report of myocardial 

infarction confirmed by electrocardiogram or additional clinical information, or the presence of an 

electrocardiogram characteristic of prior myocardial infarction. Information on smoking habits and 

the use of anti-hypertensive medication were obtained during the interview. Smoking was divided 

in three categories namely current, former and non-smokers. Height and weight were measured, 
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and the body mass index (BMI) was computed (Kg/m2). Diabetes mellitus was defined as the use 

of blood glucose lowering medication or a random or post-load serum glucose level 11.1 mmol/l.23 

Serum total cholesterol and high-density lipoproteins (HDL) cholesterol values were determined by 

an automated enzymatic procedure (Boehringer Mannheim System, Mannheim, Germany). Two 

seated blood pressure measurements are obtained at the right brachial artery with a random zero 

sphygmomanometer. The mean of two consecutive measurements was used. Hypertension was 

defined as systolic blood pressure≥ 140 mmHg and/or diastolic blood pressure≥ 90 mmHg and/or 

the use of anti-hypertensive medication. Orthostatic hypotension was measured with a Dinamap 

automatic blood pressure recorder (Dinamap R, Tampa, USA). The baseline reading is the mean 

of two blood pressure measurements on the right upper arm with the subject in supine position 

after five minutes of rest. Measurements were repeated in the standing position after one, two and 

three minutes. Orthostatic hypotension is defined as a decline in systolic blood pressure of ≥20 

mmHg and/or decline in diastolic blood pressure of ≥10 mmHg from supine to standing position at 

any of the three measurements. 

Incident Cardiovascular Events and All-cause Mortality

Information on fatal and non-fatal cardiovascular outcomes was obtained through automated 

linkage with the files from general practitioners and letters and discharge reports from medical 

specialists. When a cardiovascular event was reported, the research assistants collected 

additional information from medical records of the general practitioner and in addition, obtained 

information from the hospital discharge records or nursing home records including letters from 

medical specialists. For the diagnosis of cardiac events, two research physicians independently 

coded all reported events. In case of disagreement, a medical expert in the field made a decision. 

In case of stroke, two research physicians and an experienced neurologist coded the events. 

Codes were assigned according to the International Classification of Diseases (ICD-10), 10th 

edition24. Coronary heart disease was defined as the occurrence of a fatal or non-fatal myocardial 

infarction (ICD-10 code I21), a percutaneous transluminal coronary angioplasty, a coronary artery 

bypass graft, other forms of acute (I24) or chronic ischemic heart disease (I25), sudden cardiac 

death (I46 and R96), and death due to ventricular fibrillation (I49) and congestive heart failure 

(I50). ICD-10 codes used for coding stroke were I61, I63 and I64. Heart failure was determined by 

using a validated score, which is similar with the definition of heart failure of the European Society 

of Cardiology25. Information on vital status was acquired at regular intervals from the municipal 

authorities of Rotterdam. For the present study, follow up was completed for stroke and CHD till 

January 2005, for heart failure and all-cause mortality till October 2006.

Population for Analysis

In total 7,983 subjects (response rate 78%) agreed to participate and were interviewed at 

home, and 7,129 subjects visited the research center for physical examinations. Blood pressure 

measurements both in supine and standing position were available in 6,455 participants. Subjects 

with CHD (n=743), stroke (n=164) or heart failure (n=194) at baseline and subjects with missing data 

on smoking (n=357), use of anti-hypertensive medication (n=2,191), BMI (n=1,073), blood pressure 

(n=975), diabetes mellitus (n=202), total cholesterol (n=944) and HDL cholesterol (n=973) were 
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excluded from the analyses. The number of missing is overlapping, leaving a total number of 5,064 

subjects available for this analysis.

Data Analysis

The baseline characteristics of the subjects with and without orthostatic hypotension are compared 

with Student t tests for continuous variables and with the chi-square test for categorical variables. 

A power calculation was performed, this showed a power of 96% to reach a hazard ratio of 2 in a 

population of 5064 subjects.  We used Cox-proportional hazard models to estimate hazard ratios 

with corresponding 95% confidence intervals for CHD, stroke, heart failure and all-cause mortality 

by orthostatic hypotension status. The first model was adjusted for age and gender. Model two 

was additionally adjusted for smoking, use of anti-hypertensive medication, BMI, systolic blood 

pressure, diastolic blood pressure, diabetes mellitus, total cholesterol and HDL cholesterol. To 

investigate whether the prognostic role of orthostatic hypotension varied with aging together with 

the age-related changes of cardiovascular risk load, we performed analyses in tertiles of age, 

gender, hypertension status and diabetes mellitus status. We considered statistical significance 

when the p-value was below 0.05. All analyses are performed using SPSS 11.0 statistical package 

for Windows 2000 (SPSS Inc., Chicago, Illinois, USA). 

Table 1. Baseline Characteristics of the Study Subjects (n=5064)

Characteristics Total 

subjects

(n= 5,064)

Subjects 

without OH

(n=4,163)

Subjects 

with OH

(n=901)

P value*

Men (%) 38.4 % 40.1 % 30.9 % < .001

Age (years) 68.1 ± 8.5 67.3 ± 8.2 71.8 ± 8.8 < .001

Smoking (%)

        Current smoker 22.4 % 22.3 % 23 % 0.667

        Former smoker 41.6 % 42.6 % 37 % 0.002 

        Never smoker 36.0 % 35.1 % 40 % 0.005

Anti-hypertensive medication (%) 26.9 % 25.3 % 34.3 % < .001

Body mass index (kg/m2) 26.2 ± 3.6 26.2 ± 3.5 26.5 ± 4.0 .035

Systolic blood pressure (mmHg) 139 ± 22 138 ± 22 144 ± 23 < .001

Diastolic blood pressure (mmHg) 74 ± 11 74 ± 11 74 ± 12 .935

Diabetes mellitus (%) 8.9 % 8.3 % 11.5 % .002

Total cholesterol (mmol/L) 6.66 ± 1.22 6.65 ± 1.20 6.69 ± 1.33 .349

HDL cholesterol (mmol/L) 1.37 ± 0.38 1.37 ± 0.37 1.35 ± 0.40 .075

Values with a ± sign are the mean ± SD or percentage

* Test of difference between means was performed using Student t test, and test of 

differences between proportions was performed with chi-square test.

OH= orthostatic hypotension, HDL= High-density lipoprotein
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Results

The baseline characteristics of the 5,064 subjects are shown in table 1. Thirty-eight percent of 

the subjects were men and the mean age was 68 years. Of the 5,064 subjects in this study, 

901 (17.8%) subjects had orthostatic hypotension; the prevalence of orthostatic hypotension was 

higher in women than in men (P< .001). Subjects with orthostatic hypotension were older (P< .001), 

used more often anti-hypertensive medication (P< .001), had higher BMI (P= .035), had higher 

systolic blood pressure levels (P< .001) and had higher prevalence of diabetes mellitus (P= .002). 

During follow-up had 668 subjects CHD (mean follow-up period 6.0±3.5 years), 503 subjects had 

a stroke (mean follow-up period 6.7±3.6 years), 571 subjects developed heart failure (mean follow-

up period 6.6±3.9 years) and 1,835 subjects died (mean follow-up period 7.8±3.8 years). Of the 

901 subjects with orthostatic hypotension at baseline 152 subjects had CHD, 119 subjects had 

stroke, 140 subjects had heart failure and 465 subjects died, during follow-up. In models adjusted 

for age and gender, orthostatic hypotension predicted CHD (HR 1.31; 95% CI 1.08-1.57), heart 

failure (HR 1.21; 95% CI 1.00-1.48) and all-cause mortality (HR 1.22; 95% CI 1.09-1.36) (table 2). 

The association between orthostatic hypotension and heart failure was less consistent in models 

adjusted for cardiovascular risk factors. To study whether the association between orthostatic 

hypotension and incident events varied by age, gender, hypertension status and diabetes mellitus 

status, stratified analyses were performed. Mean age was for age-specific tertiles 59.3 (range 55-

63), 67.0 (range 63.1-71.3), 78.0 (range 71.4-98.7), in the first, second and third tertile, respectively. 

Hypertension was present in 57,6 % and diabetes mellitus was present in 8,9% of the participants. 

Among the younger subjects (first tertile), orthostatic hypotension predicted all-cause mortality 

(HR 1.80; 95% CI 1.25-2.60) and showed a trend for CHD (HR 1.56; 95% CI 0.99-2.46). In the older 

subjects (third tertile) orthostatic hypotension predicted stroke (HR 1.35; 95% CI 1.04-1.75), heart 

failure (HR 1.32; 95% CI 1.04-1.67) and all-cause mortality (HR 1.27; 95% CI 1.11-1.44) (table 3). 

In hypertensive participants, orthostatic hypotension increased the risk of CHD (HR 1.27; 95% CI 

1.03-1.57) and all-cause mortality (HR 1.20; 95% CI 1.06-1.36). In subjects with diabetes mellitus, 

orthostatic hypotension gave a twofold increase risk of heart failure (HR 1.97; 95% CI 1.22-3.19).
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Table 2: Cox Proportional Hazards Regression Models of Orthostatic Hypotension and Risk 

of CHD, Stroke, Heart Failure and All-cause Mortality.

CHD P 

value

Stroke P 

value

Heart failure P 

value

All-cause mortality P 

value

(668/5,064)

HR (95% CI)

(503/5,064)

HR (95% CI)

(571/5,064)

HR (95% CI)

(1835/5,064)

HR (95% CI)

Model 1 1.31 (1.08-1.57) 0.005 1.17 (0.95-1.45) 0.13 1.21 (1.00-1.48) 0.05 1.22 (1.09-1.36) <0.001

Model 2 1.20 (1.00-1.45) 0.05 1.10 (0.89-1.36) 0.35 1.12 (0.92-1.36) 0.27 1.16 (1.04-1.29) 0.007

Model 1 adjusted for age and gender

Model 2 adjusted for model 1 + smoking, use of anti-hypertensive medication, body mass index, 

systolic blood pressure, diastolic blood pressure, diabetes mellitus, total cholesterol and 

high-density lipoprotein cholesterol

CHD = Coronary heart disease, HR = Hazard ratio, CI = Confidence interval

 

Table 3: Stratified Proportional Hazard Models of Orthostatic Hypotension and Risk of 

CHD, Stroke, Heart Failure and All-cause Mortality

CHD Stroke Heart failure All-cause mortality

Events/ 

subjects

HR (95% CI) Events/ 

subjects

HR (95% CI) Events/ subjects HR (95% CI) Events/ subjects HR (95% CI)

Gender

Male 343/1,946 1.18 (0.88-1.57) 198/1,946 1.09 (0.76-1.58) 249/1,946 0.95 (0.67-1.33) 802/1,946 1.27 (1.07-1.51)

Female 325/3,118 1.22 (0.95-1.56) 305/3,118 1.10 (0.85-1.42) 322/3,118 1.22 (0.96-1.56) 1033/3,118 1.10 (0.95-1.26)

Age

Tertile 1 154/1,688 1.56 (0.99-2.46) 61/1,688 1.56 (0.76-3.20) 64/1,688 1.13 (0.53-2.41) 211/1,688 1.80 (1.25-2.60)

Tertile 2 230/1,689 1.14 (0.81-1.62) 169/1,689 0.76 (0.49-1.19) 183/1,689 0.91 (0.61-1.37) 501/1,689 1.13 (0.89-1.42)

Tertile 3 284/1,687 1.21 (0.94-1.57) 273/1,687 1.35 (1.04-1.75) 324/1,687 1.32 (1.04-1.67) 1123/1,687 1.27 (1.11-1.44)

Hypertension

No 198/2,146 0.93 (0.61-1.40) 129/2,146 0.90 (0.55-1.46) 126/2,146 0.99 (0.61-1.60) 564/2,146 1.05 (0.84-1.30)

Yes 470/2,918 1.27 (1.03-1.57) 374/2,918 1.14 (0.90-1.44) 445/2,918 1.14 (0.92-1.42) 1271/2,918 1.20 (1.06-1.36)

Diabetes Mellitus

No 576/4,615 1.15 (0.94-1.41) 422/4,615 1.16 (0.92-1.46) 485/4,615 1.00 (0.80-1.24) 1579/4,615 1.15 (1.02-1.29)

Yes 92/449 1.36 (0.84-2.21) 81/449 0.91 (0.52-1.61) 86/449 1.97 (1.22-3.19) 256/449 1.29 (0.97-1.72)

Model adjusted for age, gender, smoking, use of anti-hypertensive medication, body mass index, 

systolic blood pressure, diastolic blood pressure, diabetes mellitus, total cholesterol and high-density 

lipoprotein cholesterol.(When appropriate)  CHD = Coronary heart disease, HR = Hazard ratio, 

CI = Confidence interval
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Orthostatic hypotension and the risk of cardiovascular disease 
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Discussion

In the present study orthostatic hypotension increased slightly the risk of CHD and all-cause 

mortality in apparently healthy elderly. Associations between orthostatic hypotension and 

cardiovascular risk were strongest in the relatively younger and very old participants.

Previous studies have investigated the relation between orthostatic hypotension and the risk 

of CHD, stroke and mortality. The atherosclerosis risk in communities (ARIC) study, a large 

population-based prospective cohort study which included middle-aged participants (45-65 

years old), found strong associations between orthostatic hypotension and stroke9, CHD10 and 

mortality11. Other studies were performed in the older subjects. The Honolulu Heart program17, a 

prospective study of 3,741 Japanese men aged 71 to 93 years, found that orthostatic hypotension 

increased the risk of all-cause mortality in elderly Japanese men. Other authors have shown that 

orthostatic hypotension increased the risk of myocardial infarction and cardiovascular death in 700 

home-dwelling Finnish elderly aged 70 years and older12,14. On the contrary, in a study including 

500 acute geriatric ward patients15, and in a study including 350 subjects aged 65 years and over3, 

orthostatic hypotension did not increase the risk of vascular death. 

As previously reported by others, also in this large population-based study, orthostatic hypotension 

increased the risk of cardiovascular disease and all-cause mortality in the elderly. According to 

previous studies10,18,26, subjects with orthostatic hypotension were older, used more often anti-

hypertensive medication, had a higher mean BMI, higher mean levels of systolic blood pressure 

and more often had diabetes mellitus. 

The association between orthostatic hypotension and cardiovascular disease may have several 

explanations. Orthostatic challenge gives a displacement of blood to the lower body. This could 

give a decrease in thoracic blood volume from 25 to 30%27. The secondary reduction in the 

coronary and cerebral flow during a strong postural blood pressure drop may cause myocardial 

and cerebral ischeamia3. Orthostatic hypotension could also be the expression of underlying 

cardiovascular disease. Cerebral infarcts, myocardial infarcts and heart failure28,29 could cause 

orthostatic hypotension3. Also diabetes mellitus30 and hypertension10 may be associated with 

orthostatic hypotension. Therefore, one possible question could be whether the association 

between orthostatic hypotension and cardiovascular disease might be explained by these 

conditions. For this reason, subjects with previous cardiovascular disease were excluded at 

baseline and analyses adjusted for diabetes mellitus, hypertension and other cardiovascular risk 

factors were performed. Nevertheless, associations between orthostatic hypotension and CHD and 

all-cause mortality remained statistically significant after adjustments, suggesting an independent 

prognostic role of orthostatic hypotension. The predictive role of orthostatic hypotension was 

strongest in the relatively younger and the very old subjects. Some studies have suggested that 

orthostatic hypotension is a marker of frailty in the very old17, whereas the prevalence of orthostatic 

hypotension is much lower in the relatively younger subjects. Therefore, it might be speculated 

that the presence of orthostatic hypotension in younger adults might be the expression of an 

underlying silent cardiovascular disease. 
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It is known that hypertension is associated with orthostatic hypotension4,26, particularly in the 

elderly, and that both might be the expression of blood pressure dysfunction; in the present study 

we found that in hypertensives orthostatic hypotension increased the risk of CHD and all-cause 

mortality. 

The present study has some limitations. First, blood pressure measurements were performed 

once, which could bias our results because of the day variability of blood pressure. The use of 

multiple blood pressure measurements might have improved accuracy and precision. Second, 

measures of orthostatic hypotension and blood pressure were not available for all participants. 

However, in our opinion, this will not have biased our results, since this was almost entirely due 

to logistic reasons and therefore random. Third, the study subjects were Caucasian, therefore 

generalizability of the results might be difficult. Fourth, there could be some residual confounding. 

Orthostatic hypotension increases the risk of falls and consequent hip fractures and these are 

associated with high mortality rate. However, since we did not adjust for these variables we cannot 

assess this relation. Finally, no correction for multiple comparisons was performed; however, we 

do not think that this might have biased our results. 

In conclusion, orthostatic hypotension increases the risk of CHD and all-cause mortality 

in apparently healthy elderly subjects. These findings support the call11 to understand the 

mechanisms responsible for cardiovascular morbidity and mortality in subjects with orthostatic 

hypotension. There is much evidence that orthostatic hypotension increases cardiovascular risk in 

the elderly9-12,14,17, future studies are needed to investigate whether identification and treatment of 

orthostatic hypotension can improve cardiovascular prognosis.
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Aortic stiffness and heart failure

Based on: 

Elevated aortic stiffness predicts heart failure in an aging population. 

The Rotterdam Study. Submitted  
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Abstract

Background

Hypertension is a well-known risk factor for heart failure. Accumulating evidence suggests that 

arterial stiffness could also be an important predictor of heart failure. 

Methods

Within the framework of the Rotterdam Study, we investigated the role of different blood pressure 

components and aortic stiffness in predicting incident heart failure in community dwelling 

elderly. In the present study, we included 5104 subjects with both blood pressure measurements 

and information on aortic pulse wave velocity. Cox proportional hazard models, adjusted for 

cardiovascular risk factors, were performed.

Results

The mean age of the subjects was 68.3 years, 44.2% was male. After a mean follow-up of 7.9 years 

393 subjects developed heart failure. Systolic blood pressure (hazard ratio 1.22; 95% confidence 

interval 1.11-1.34), pulse pressure (hazard ratio 1.28; 95% confidence interval 1.16-1.40) and aortic 

pulse-wave velocity (hazard ratio 1.16; 95% confidence interval 1.05-1.27) were significantly 

associated with incident heart failure after adjustment for age and gender. 

Conclusions

The pulsatile components of blood pressure and aortic stiffness are associated with the risk of 

heart failure in community dwelling elderly.
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Introduction

Heart failure is one of the most prevalent cardiovascular disorders in industrialized countries1-4, 

representing a major health problem in aging populations2,4,5. Hypertension is a well-established 

risk factor of heart failure6; the prognostic significance of systolic blood pressure has extensively 

been reported7,8 and clinical trials have demonstrated a reduction in the incidence of heart failure 

with lowering of elevated blood pressure9. There is evidence that the pulse pressure, an indirect 

measure of arterial stiffening, is a stronger predictor of cardiovascular morbidity and mortality in 

the elderly, when compared with other blood pressure components10. Pulse pressure has been 

associated with heart failure in several large studies in middle-aged subjects8, elderly11,12 and 

in subjects with isolated systolic hypertension13. However, arterial stiffness can also be directly 

assessed by measuring the carotid femoral pulse wave velocity representing aortic stiffness14. To 

the best of our knowledge, only one study has investigated the value of aortic pulse wave velocity 

(aPWV) in predicting heart failure in elderly subjects15, in which an association between aPWV and 

heart failure was not found.

The Rotterdam Study, a large ongoing longitudinal population-based study, provides an opportunity 

to obtain knowledge on long term associations with incident disease in an aging population. We 

investigated the role of different blood pressure components and aortic stiffness in predicting 

incident heart failure in community dwelling elderly.
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Methods

Study population

The present study was performed within the framework of the Rotterdam Study (RS-I), a 

population-based prospective cohort study comprising 7983 participants aged 55 and over living 

in Ommoord, a suburb of Rotterdam, the Netherlands. In 1999, inhabitants who turned 55 years 

of age or moved into the study district since the start of the study were invited to participate in an 

extension of the Rotterdam Study (RS-II) of whom 3011 participated (67% response rate).The overall 

aim of the Rotterdam study is to access the occurrence of and risk factors for chronic diseases 

in the elderly. The study design and objectives of the Rotterdam study are described elsewhere16. 

During the third examination phase of RS-I (1997-1999) and during the first examination phase of 

RS-II (2000-2001), a computerized questionnaire was completed and cardiovascular risk factors 

and arterial stiffness were assessed. Overall, 6938 subjects visited the research center, of those, 

measures of both blood pressure levels and aPWV were obtained in 5773 subjects. We excluded 

subjects with prevalent heart failure at baseline (n=216), and subjects loss to follow-up (n=30) or 

missing informed consent (n=25) or missing covariate information (n=452), resulting in a sample 

of 5050 subjects. Missing information was primarily due to logistic reasons. The Medical Ethics 

Committee of Erasmus Medical Center approved the study and written consent was obtained from 

all participants.

Blood pressure measurements

Two blood pressure measurements were obtained at the right brachial artery with a random zero 

sphygmomanometer after the subject had been seated for at least five minutes. Systolic blood 

pressure (SBP), first Korotkoff phase and diastolic blood pressure (DBP), fifth Korotkoff phase, 

were obtained and the mean of the two blood pressure values was used in the analyses. Pulse 

pressure (PP) was calculated as SBP minus DBP. Mean arterial pressure was calculated as DBP 

+ 1/3 PP.

Aortic stiffness

Carotid-femoral pulse wave velocity (PWV), a measure of aortic stiffness, was obtained with 

subjects in supine position. Before the aPWV measurement, the blood pressure was measured 

twice with a sphygmomanometer after five minutes of rest and the mean was taken. The aPWV 

was assessed with an automatic device (Complior® Artech Medical, Pantin – France)17 that 

measures the time delay between the rapid upstroke of the feet of simultaneous recorded pulse 

waves in the carotid artery and the femoral artery. The distance between the recording sites in the 

carotid and the femoral artery was measured with a tape over the surface of the body. The aPWV 

was calculated as the ratio between distance and the foot-foot time delay and was expressed in 

meter per second.



150

Chapter 5.1

Cardiovascular risk factors

Information on medical history, smoking habits and the use of anti-hypertensive medication was 

obtained during the interview. Smoking was divided into three categories: current, former and 

non-smokers. Height and weight were measured, and the body mass index (BMI) was computed 

(kg/m2). Diabetes mellitus was defined as a history of diabetes mellitus and/or the use of blood 

glucose lowering medication and/or a fasting serum glucose level equal to or greater than 7.0 

mmol/l18. Serum total cholesterol and high-density lipoproteins (HDL) cholesterol values were 

determined by an automated enzymatic procedure (Boehringer Mannheim System).19

Heart failure assessment

Assessment of prevalent and incident heart failure has been described in detail elsewhere.4,5,20 

Briefly, prevalent heart failure was determined by using a validated score which is similar with 

the definition of heart failure of the European Society of Cardiology3. This score is based on the 

presence of at least two signs or symptoms which are suggestive for heart failure or use of heart 

failure medication and objective evidence of cardiovascular disease. 

Cases of incident heart failure were obtained by continuously monitoring subjects in the Rotterdam 

study for the occurrence of heart failure during follow-up through automated linkage with files from 

general practitioners. All available data on these events were copied from the medical records. 

Incident heart failure was adjudicated in accordance with the criteria of the European Society 

of Cardiology3 on the basis of combination of signs and symptoms, and objective evidence of 

cardiac dysfunction, including chest radiographs or echocardiography. Two independent research 

physicians adjudicated all potential heart failure cases. In case of disagreement the judgment of a 

cardiologist was sought and considered decisive. Only definite and probable cases of heart failure 

were included in the analyses. The date of incident heart failure was defined as the day of the first 

occurrence of symptoms suggestive of heart failure, or the day of receipt of a first prescription for 

a loop diuretic or angiotensin-converting enzyme inhibitor for heart failure. Subjects were followed 

from baseline until the first of one of the following: a diagnosis of incident heart failure, death, loss 

to follow-up (<1%) or date of last collection of information for determination of heart failure, January 

1st, 2009. 
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Statistical analysis

First, we examined the association between standardized blood pressure components (systolic, 

diastolic, mean arterial and pulse pressure), standardized aPWV and the risk of incident heart 

failure using Cox Proportional Hazards regression. Hazard ratios (HR) and corresponding 95% 

confidence intervals (95% CI) were calculated. Standardized values were obtained by dividing 

each measure by its standard deviation. Covariates selected for adjustments were based on prior 

reports21. The first model included age, sex and cohort. In the second model we additionally 

adjusted for smoking, BMI, use of anti-hypertensive medication, total cholesterol, HDL cholesterol 

and diabetes mellitus; in models including aPWV we additionally adjusted for mean arterial 

pressure and heart rate. To investigate whether the effect of pulse pressure on the risk of heart 

failure was independent of systolic blood pressure, we performed analyses where both systolic 

pressure and pulse pressure were included in the model. To assess whether the associations 

were mediated by myocardial infarction, we performed analyses additionally adjusted for prevalent 

myocardial infarction. The Kaplan-Meier method was used to estimate survival curves of heart 

failure associated with tertiles of PWV. Finally, we tested for interaction by age. When this 

interaction term was significant we performed age-stratified analyses. P-values less than 0.05 

were considered statistically significant. All analyses were performed using SPSS 21.0 statistical 

package for Windows 2012 (SPSS, INC., Chicago, Illinois, USA).

Table 1: Baseline Characteristics of the study participants (n=5050).

Characteristics Mean ± SD or percentage

Age (years) 68.3 ± 7.9 

Men (%) 44.2

Systolic blood pressure (mmHg) 143 ± 21

Diastolic blood pressure (mmHg) 77 ± 11

Mean arterial pressure (mmHg) 99 ± 13

Pulse pressure (mmHg) 66 ± 17

Pulse wave velocity (m/sec) 13.1 ± 3.1

Heart rate (bpm) 74 ± 13

Body mass index (kg/m2) 26.9 ± 4.0

Total cholesterol (mmol/L) 5.8 ± 1.0

High density lipoprotein cholesterol (mmol/l) 1.4 ± 0.4

Current smokers (%) 17.4

Diabetes mellitus (%) 12.4

Use of antihypertensive medication (%) 23.1

SD= standard deviation
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Results

The baseline characteristics of the study population are shown in table 1. The mean age of the 

study population was 68.3 years and the percentage men were 44.2%. During a mean of 7.9 years 

follow-up, 393 subjects developed heart failure with a median time to event of 8.4 years. 

SBP (HR 1.22; 95% CI 1.11-1.34) and pulse pressure (HR 1.28; 95% CI 1.16-1.40) predicted 

heart failure in the age, gender and cohort adjusted model (table 2). In the model adjusted for 

cardiovascular risk factors and myocardial infarction, the associations between systolic blood 

pressure, pulse pressure and heart failure were slightly decreased, however remained statistically 

significant. DBP (HR 1.00; 95% CI 0.91-1.10) showed no association with heart failure and mean 

arterial pressure (HR 1.12; 95% CI 1.02-1.23) a very weak association and became non-significant 

after adjustment for cardiovascular risk factors and myocardial infarction. When both SBP and 

pulse pressure were included in the same model, pulse pressure (HR 1.28; 95% CI 1.06-1.54) 

remained a predictor of heart failure, whereas SBP (HR 0.95; 95% CI 0.79-1.15) did not.

Table 2: Hazard ratios of heart failure associated with a 1- standard deviation increment of 

blood pressure components

Systolic blood 

pressure

Diastolic blood 

pressure

Pulse pressure Mean arterial 

pressure

Cases/Subjects

393/5050

HR (95% CI) HR (95% CI) HR (95% CI) HR (95% CI)

Model 1 1.22 (1.11-1.34) 1.00 (0.91-1.10) 1.28 (1.16-1.40) 1.12 (1.02-1.23)

Model 2 1.16 (1.06-1.28) 0.97 (0.88-1.07) 1.22 (1.11-1.34) 1.07 (0.97-1.18)

Model 3 1.18 (1.07-1.30) 0.99 (0.89-1.09) 1.22 (1.11-1.34) 1.09 (0.99-1.21)

Model 1: Adjusted for age, gender and cohort

Model 2: Model 1 + smoking, body mass index, use of anti-hypertensive medication, diabetes mellitus, total 

cholesterol and high-density lipoprotein cholesterol

Model 3: Model 2 + prevalent myocardial infarction 

HR: Hazard ratio; CI: Confidence interval
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Higher PWV was positively associated with heart failure. In the model adjusted for age, gender and 

cohort, aortic pulse wave velocity was associated with heart failure (HR 1.16; 95% CI 1.05-1.27) 

(table 3). This association was borderline significant after adjustment for cardiovascular risk factors 

and prevalent myocardial infarction. 

Table 3: Hazard ratios of heart failure associated with a 1- standard deviation increment 

of aPWV

aPWV

Cases/Subjects

393/5050

HR (95% CI)

Model 1 1.16 (1.05-1.27)

Model 2 1.11 (1.00-1.22)

Model 3 1.10 (1.00-1.22)

Model 1: Adjusted for age, gender and cohort

Model 2: Model 1 + mean arterial pressure, heart rate, smoking, use of anti-hypertensive medication, body 

mass index, diabetes mellitus, total cholesterol and high-density lipoprotein cholesterol

Model 3: Model 2 + prevalent myocardial infarction

HR: Hazard ratio; CI: Confidence interval; aPWV: aortic pulse wave velocity
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There was significant effect modification by age with aPWV (P=0.008), therefore we performed 

analysis for subjects younger and older than 70 years of age. Systolic and pulse pressure are in the 

oldest group predictive for heart failure (HR 1.19; 95% CI 1.07-1.35 and HR 1.23; 95% CI 1.11-1.37, 

respectively) with the same magnitude as in the overall analysis (table 4). Aortic pulse wave velocity 

is associated with heart failure in the youngest group (HR1.29 ; 95% CI 1.03-1.62). 

Table 4: Stratified proportional hazard models of systolic blood pressure, pulse pressure, 

aPWV and risk of heart failure

Cases/

subjects

Systolic 

blood 

pressure

P for 

interaction

Pulse 

pressure

P for 

interaction

aPWV P for 

interaction

HR (95% 

CI)

HR (95% 

CI)

HR (95% 

CI)

Age

< 70 109/3063 1.11 (0.91-

1.35)

0.635 1.15 (0.94-

1.42)

0.792 1.29 (1.03-

1.62)

0.008

> 70 284/1987 1.19 (1.07-

1.33)

1.23 (1.11-

1.37)

1.07 (0.96-

1.20)

Adjusted for age, gender, cohort, smoking, use of anti-hypertensive medication, body mass index, diabetes 

mellitus, total cholesterol, high-density lipoprotein cholesterol, prevalent myocardial infarction and additionally 

mean arterial pressure and heart rate, when appropriate

HR: Hazard ratio; CI: Confidence interval; aPWV: aortic pulse wave velocity
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Discussion

In this population-based prospective cohort study which included more than 5000 participants 

we found that aortic stiffness predicted heart failure in the an apparently healthy aging population.

Previous population-based studies have reported on the association of blood pressure with 

incident heart failure. Several studies demonstrated the role of  pulse pressure in predicting heart 

failure in the elderly11-13. The Framingham Heart Study has demonstrated that each component 

of blood pressure was associated with the risk of heart failure, but systolic blood pressure and 

pulse pressure is associated with the highest risk8. The magnitude of the association between 

pulse pressure and heart failure reported in our study is comparable with that reported in previous 

studies in the elderly. However, in the present study the diastolic blood pressure was not predictive 

of heart failure as previously found in large studies which included relatively young subjects8. This 

is the first large population-based on healthy middle aged and elderly subjects, which showed a 

consistent relation between elevated aortic stiffness and incident heart failure in the elderly and 

remained significant after adjustment for cardiovascular risk factors.  

Heart failure is a growing health problem in the aging population with a high morbidity and mortality. 

To improve treatment of heart failure, mechanism regarding development of heart failure should be 

unraveled. Hypertension is one of the well-known risk factors for heart failure and the prognostic 

significance of systolic blood pressure has extensively been reported7,22,23. The Framingham 

Heart Study showed that with advancing age from age 50 years onwards there is a shift from 

diastolic pressure to systolic pressure and then to pulse pressure, a proxy of aortic stiffness, as 

predictors of cardiovascular risk10 and increasing evidence suggests a link between stiffness of 

the conduit vessels and cardiovascular disease morbidity and mortality15,24-26. Both pulse pressure 

and aortic pulse wave velocity are suggested to be a risk factor for development and progression 

of heart failure. Aortic stiffness is involved in the pathogenesis of hypertension27,28 and is also 

related to myocardial infarction and diabetes mellitus29, which are all risk factors for developing 

heart failure. Secondly, increased aortic stiffness increases the pulsatile load on the left ventricle 

and could lead to left ventricular hypertrophy30 and concentric remodeling31, which is one of the 

major determinants of cardiac diastolic dysfunction. Finally, abnormal shear stress associated with 

increased aortic stiffness stimulates hypertrophy and atherogenesis in central arteries, including 

the coronary arteries32. A heart with a normal coronary circulation is capable of regulation coronary 

blood flow by means of vasodilatation to secure the metabolic needs of the myocardium even when 

the diastolic perfusion pressure declines33. However, in the presence of coronary artery disease 

this regulation mechanism can be exhausted and a decline in aortic diastolic blood pressure could 

lead to subendocardial ischemia and extensive ventricular damage34.
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Both systolic and pulse pressure increased the risk of heart failure. When systolic blood pressure 

and pulse pressure are included both in one model, only pulse pressure predicted incident heart 

failure. This suggests that pulse pressure is not only a reflection of the separate effects of high 

systolic blood pressure and low diastolic blood pressure, but has an additional independent 

predictive role. Increased pulse pressure is supposed to be an expression of stiffer central arteries. 

This was confirmed by our results of increasing levels of aPWV and incident heart failure in the 

present study.

Finally, we found a stronger predictive role of aortic stiffness in the relatively young subjects, 

compared to the very old subjects. It is suggested that the prognostic value of several predictors of 

cardiovascular disease, as aortic stiffness, might decrease with age, due to selective survival and 

the influence of co-morbidity on risk factor levels. Conversely, the predictive role of both systolic 

and pulse pressure was strongest in the very old subjects. Brachial systolic and pulse pressure 

can overestimate central systolic and pulse pressure especially in younger subjects14, leading to 

an underestimation of the predicted risk. However, the pressure amplification might be attenuated 

and even lost during aging, which leads to better correlated peripheral and central pressures in 

the elderly and a more accurate prediction of cardiovascular risk with brachial pulse pressure in 

older subjects.

Several issues regarding our study methods should be discussed. First, information on aPWV 

was not available for all participants, however this was most due to logistic reasons and therefore 

random. Secondly, the measurements of aortic stiffness were performed only once; it might be 

speculated that the use of multiple measurements of aortic stiffness could improve accuracy and 

precision. Finally, the present results are obtained in a Caucasian population and therefore cannot 

be extrapolated to other populations. The present study has also several strengths. The Rotterdam 

Study is a large population-based prospective cohort study in the elderly with an extensive follow-

up. Besides a baseline screening in the majority of participants using a validated score, we applied 

clinical criteria for heart failure throughout the Rotterdam Study, based upon guidelines of the 

European Society of Cardiology. Apart from hospital discharge letters, medical records from 

general practitioners were available for assessment of cases. Consequently, less severe cases 

were also included in our study.

In conclusion, we found that elevated aortic stiffness increases the risk of heart failure in apparently 

healthy elderly.
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Abstract

Background

It has been demonstrated that aortic stiffness is an independent predictor of cardiovascular 

disease. We investigated whether this measure is of use in cardiovascular risk stratification in 

clinical practice for elderly subjects (mean age 71.5 years).   

Methods

Within the framework of the Rotterdam Study we stratified subjects free of coronary heart disease 

at baseline into categories of low (<10%), intermediate (10-20%) and high (>20%) 10-year risk 

of coronary heart disease based on Framingham risk factors. Within each risk category, we 

determined the percentages of subjects moving into a higher or lower risk category when adding 

aortic stiffness to the Framingham risk factors. 

Results

Among 2849 participants, 223 coronary heart disease events occurred during a median follow-

up of 7.9 years. In the low risk group 5% of the subjects could be reclassified and in the high-risk 

group 6% of the subjects could be reclassified to the intermediate risk group. In the intermediate 

risk group 3% could be reclassified to the high-risk group and 6% to the low risk group. 

Conclusion 

In a population of elderly subjects, aortic stiffness measurement in addition to Framingham 

risk factors leads to a limited reclassification of subjects in 10-year cardiovascular disease risk 

categories. Therefore, aortic stiffness is associated with the risk of coronary heart disease in 

elderly, but provides no additional value in cardiovascular risk stratification.
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Introduction

Primary prevention of coronary heart disease (CHD) is based on the assessment of traditional 

cardiovascular risk factors, including older age, male gender, hypercholesterolaemia, low levels 

of high-density lipoprotein cholesterol, smoking, hypertension and diabetes mellitus. Treatment of 

these risk factors has shown to reduce cardiovascular morbidity and mortality. Current guidelines 

recommend algorithms such as SCORE1 risk chart or Framingham Risk Score2 for predicting the 

10 year absolute risk for CHD. Non-invasive measures of arterial stiffness, as the aortic pulse wave 

velocity (aPWV), have shown to be independent risk factors of CHD3,4 and, therefore, are proposed 

as addition to traditional risk factor for predicting incident CHD5. The recent European guidelines 

for the diagnosis and treatment of hypertension suggest that an aPWV higher than 12 m/s is a 

marker of target organ damage6. However, whether measures of arterial stiffness are of use in 

cardiovascular risk prediction in clinical practice needs to be determined. 

We have investigated the predictive value of aPWV beyond traditional risk factor assessment in an 

ongoing population-based prospective study in the elderly. Subjects were stratified in three risk 

categories, namely low (<10%), intermediate (10-20%) and high (>20%), based on the Framingham 

risk factors. We determined the percentages of subjects moving into a higher or lower risk category 

when adding aPWV to the Framingham risk factors.

 

Methods

Study population 

The present study is performed within the framework of the Rotterdam Study, a population-based 

prospective cohort study in Ommoord, a suburb of Rotterdam, The Netherlands. Overall aim of the 

Rotterdam Study is assessing the occurrence of and risk factors for chronic diseases. The study 

design and objectives of the Rotterdam Study are described elsewhere7. Briefly, the baseline visit 

started between 1990 and 1993. All inhabitants of Ommoord, aged 55 years and older were invited 

to participate (n=10,275). Of them, 7983 (78%) gave their written informed consent and took part 

in the baseline examination. Since the start of the study, follow-up visits took place in the period 

1993 through 1996 for the second visit, in the period 1997 through 1999 for the third visit, and in the 

period 2002 through 2004 for the fourth visit. A flow diagram of the Rotterdam Study is provided in 

Figure 1. During the third examination phase, which took place from 1997 until 1999, a computerized 

questionnaire was completed and assessment of cardiovascular risk factors and arterial stiffness 

were performed. A total of 4024 participants visited the research center, of these 3445 persons had 

an aPWV measurement. Missing information on aPWV was primarily due to logistic reasons, including 

illness of the cardiovascular research assistants, maintenance service of the Complior device and 

temporary technical problems with the Complior device, and is therefore likely to be randomly 

distributed. Prevalent CHD was defined as a history of clinically manifest myocardial infarction, 
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coronary artery bypass grafting or percutaneous transluminal coronary angioplasty. We excluded 

subjects with prevalent CHD and stroke at the third examination (n=581) and subjects lost to follow-

up (n=15). The current analysis was carried out in 2849 subjects. The Medical Ethics Committee of 

Erasmus Medical Center approved the study and written consent was obtained from all participants.

Figure 1. Diagram of the study population of the Rotterdam Study 

Aortic stiffness

Carotid-femoral pulse wave velocity, a measure of aortic stiffness, was obtained with subjects in 

supine position. Before the aPWV measurement, blood pressure was measured twice in supine 

position with a sphygmomanometer after five minutes of rest and the mean value was taken. 

Measurements of aPWV were performed during the morning or afternoon (no specific time) and 

the subjects were non-fasting. The aPWV was assessed with an automatic device (Complior® 

Artech Medical, Pantin – France)8 that measures the time delay between the rapid upstroke of 

the feet of simultaneously recorded pulse waves in the carotid artery and the femoral artery. The 

distance between the recording sites in the carotid and the femoral artery was measured with a 

tape over the surface of the body. The aPWV was calculated as the ratio between distance and 

the foot-to-foot time delay and was expressed in meters per second. 

504 participants died
11 were lost to follow-up or were not invited
1153 did not participate in the second research round

6315 subjects participating in the second research round

1049 participants died
6 were lost to follow-up or were not invited
463 did not participate in the third research round

4797 subjects participating in the third research round

3550 subjects participating in the fourth research round

765 participants died
35 were lost to follow-up or were not invited
447 did not participate in the fourth research round

1990 - 1993

1993 - 1995

1997 - 1999

2002 - 2004

7983 subjects participating in the �rst research round

Rotterdam Study
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Cardiovascular risk factors

Information on medical history, smoking habits and the use of anti-hypertensive medication was 

obtained during the interview. Two seated blood pressure measurements were obtained at the 

right brachial artery with a random zero sphygmomanometer. Diabetes mellitus was defined as a 

history of diabetes mellitus and/or the use of blood glucose lowering medication and/or a fasting 

serum glucose level equal to or higher than 7.0 mmol/l9. Serum total cholesterol and high-density 

lipoproteins (HDL) cholesterol values were determined by an automated enzymatic procedure 

(Boehringer Mannheim System, Mannheim, Germany).10

Clinical outcomes

The follow-up procedure has previously been described in detail11. Briefly, information on fatal 

and nonfatal coronary endpoints was obtained through automated linkage with files from 

general practitioners and letters and discharge reports from medical specialists. Two research 

physicians independently coded all reported events according to the International Classification 

of disease, 10th edition (ICD-10)12. In case of disagreement, consensus was reached. A medical 

expert in cardiovascular disease, whose judgment was considered final, reviewed all events. 

CHD was defined as the occurrence of fatal or nonfatal myocardial infarction (MI) (ICD 10 code 

I21), percutaneous transluminal coronary angioplasty, coronary artery bypass grafting and CHD 

mortality. In identifying myocardial infarctions, all available information, which included ECG, 

cardiac enzyme levels, and the clinical judgment of the treating specialist, was used. If a non-fatal 

event occurred within 28 days prior to CHD death, the event was contributed to CHD mortality.

Statistical analysis

Mean values with standard deviation (SD) and percentages were calculated for continuous and 

categorical baseline variables, respectively. The baseline characteristics of males and females 

were compared using Student t-test for continuous variables and chi-square test for categorical 

variables. 

aPWV and risk of CHD

Cox proportional hazard analysis was performed to estimate the hazard ratios (HRs) with 

corresponding 95% confidence interval (CI) for CHD associated with tertiles of aPWV. Analyses 

were adjusted for age and gender, and additionally for current smoking, total cholesterol, HDL 

cholesterol, systolic blood pressure, use of anti-hypertensive medication and diabetes mellitus.
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Prediction Model

We used a Weibull survival model to predict individual 10-year CHD risk probabilities and to classify 

persons into a priori defined risk categories2. These categories were low (<10%), intermediate 

(10-20%) and high (>20%) 10-year risk of total CHD events. We restricted the predictors of the 

model to components of the Framingham Risk Score, in accordance with the ATP III guidelines2. 

The model included age, gender, systolic blood pressure, use of anti-hypertensive medication, 

total cholesterol, HDL cholesterol, diabetes mellitus and current smoking (yes/no). Additionally, 

we extended the first model with aPWV (model 2). To allow for possible nonlinear effects we used 

restricted cubic splines with three knots for continuous variables. We examined global model fit 

using Nagelkerke’s generalized model R2. This is a measure of the fraction of -2 log likelihood 

explained by the predictors, analogous to the percentage of variance explained in a linear model. 

Higher percentages indicate better model fit13,14. Furthermore, as a measure of discrimination we 

used the c-index that is defined as the proportion of all pairs of patients whose survival time 

can ordered such that he patient who survived longer has the higher predicted survival.15-17 For 

internal validation of the model, we used bootstrap sampling (150 samples) to correct for over-

optimism and calculated the bootstrap adjusted Nagelkerke’s R2. To determine how well the 

model predicts disease, the calibration of the model was evaluated by comparing the predicted 

10-year risk probabilities with observed 10-year risk in the three risk categories (low, intermediate, 

high-risk). We computed reclassification percentages to study the incremental ability of aPWV to 

classify subjects in risk categories according to commonly used categories of 10-year CHD risk 

(low, intermediate, high-risk). We used the reclassification approach comparable to the method 

previously used by Cook et al18. To evaluate true improvement in classification by addition of 

PWV to the “Framingham model” we calculated the net reclassification improvement (NRI) by the 

method of Steyerberg and Pencina, which is specially designed for survival data.19 

In case of missing values for the Framingham predictors, values were imputed using the Expectation 

Maximization method. Analyses were performed using SPSS version 15 (SPSS, INC., Chicago, 

Illinois) and R version 2.7.2 software (R Foundation for Statistical Computing, Vienna, Austria).
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Results

The baseline characteristics of the 2849 participants are shown in table 1. The population of the 

present study consisted of 1097 men (38.5%) and 1752 women. Mean age at baseline was 70.9 

years for men and 71.9 years for women (p<0.001). More men than women were smokers (17.8% 

vs. 14.2%, p<0.001) and women used more frequently anti-hypertensive medication (25.3% vs. 

19.9%, p=0.001) and serum lipid reducing agents (11.0% vs. 7.4%, p=0.002). The mean aPWV in 

men was slightly higher than in women (13.7 vs 13.1 m/s; p<0.001). The median follow-up duration 

(inter-quartile range) was 7.9 (7.3-8.7) years. During follow-up, 223 events occurred, of which 122 

in men and 101 in women.  

Table 1. Baseline characteristics of the population 

Variable All

n=2849

Men

n=1097

Women

n=1752

P value

Age, y 71.5±6.7 70.9±6.4 71.9±6.9 <0.001

Men, % 38.5 - -

Current smoking, % 15.5 17.8 14.2 <0.001

Systolic blood pressure, mmHg 143±21 143±21 143±22 0.925

Diastolic blood pressure, mmHg 76±11 77±11 75±11 <0.001

Anti-hypertensive medications, % 23.2 19.9 25.3 0.001

Total cholesterol, mmol/l 5.9±1.0 5.6±0.9 6.1±0.9 <0.001

HDL cholesterol, mmol/l 1.4±0.4 1.3±0.3 1.5±0.4 <0.001

Serum lipid reducing agents, % 9.6 7.4 11.0 0.002

Diabetes mellitus, % 12.2 13.6 11.4 0.078

aPWV, m/s 13.3±3.0 13.7±3.1 13.1±2.9 <0.001

Values are mean ± sd for continuous variables and percentages for dichotomous variable

HDL cholesterol: high-density lipoprotein cholesterol; aPWV: aortic pulse wave velocity; n: number
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The risk of CHD increased with increasing aPWV up to an age and gender adjusted hazard ratio 

(HR) of 1.94 (95% CI 1.32-2.85, p = 0.001) for subjects in the highest aPWV tertile compared with 

subjects in the lowest tertile (p for trend = 0.001) (Table 2, Figure 2). We divided the subjects into 

three risk categories (low, intermediate and high 10-year risk of CHD) based on the Framingham 

covariates. We found a modest model performance (adjusted R2 5.8%, bootstrap corrected 

c-index 0.690). Addition of aPWV measurement to the Framingham covariates did not improve the 

model performance (adjusted R2 5.6 %, bootstrap corrected c-index 0.685) (Table 3). In the low 

and high-risk groups, aPWV measurements hardly led to reclassification of subjects into a higher 

or lower risk category. In the low risk group, 5% (81) of the subjects could be reclassified and in the 

high-risk group, 6% (20) of the subjects could be reclassified to the intermediate risk group when 

adding aPWV measurement. In the intermediate risk group additional measurement of aPWV 

resulted in slight reclassification. In this category, 3% (29) of the subjects could be reclassified to 

the high-risk group and 6% (50) of the subjects could be reclassified to the low risk group (table 

4). Generally, the observed 10-year risks agreed with the corresponding categories of predicted 

risk, indicating adequate calibration of the model. In other words, using the model we were able 

to predict correctly absolute 10-year risk of CHD (table 4). However, the observed 10-year risks in 

the intermediate risk groups to the low and high-risk groups agreed less. This suggests that the 

reclassification in these groups is not totally correct and might not predict the correct 10-year risks. 

Addition of PWV to the Framingham model did not improve risk classification as indicated by an 

NRI of 0.02% (p=0.5478). In analysis stratified for gender we found no differences between men 

and women (data not shown).

 

Table 2. Hazard ratios of coronary heart disease associated with tertiles of aPWV.

HR (95% CI)

Cases/subjects Model 1 Model 2

aPWV 

Tertile 1 41/950 1.0 (reference) 1.0 (reference)

Tertile 2 78/950 1.63 (1.11-2.39) 1.41 (0.96-2.09)

Tertile 3 104/949 1.94 (1.32-2.85) 1.46 (0.98-2.19)

P for trend = 0.001 P for trend = 0.092

Model 1: age and gender adjusted

Model 2: additionally adjusted for systolic blood pressure, use of anti-hypertensive medication, smoking, total 

cholesterol, high-density cholesterol and diabetes mellitus

aPWV: aortic pulse wave velocity; HR: hazard ratio; 95% CI: 95% confidence interval
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Figure 2. Coronary heart disease free survival by tertiles of aPWV in models adjusted for age and gender.

aPWV: aortic pulse wave velocity

Table 3. Measures of model fit and discrimination for coronary heart disease models with 

and without aPWV

Model 1 Model 2

Model fit

    Likelihood ratio 120.49 122.69

    Nagelkerke R2    0.058 0.056

Discrimination

    C statistic 0.690 0.685

Model 1: age, gender, total cholesterol, high-density cholesterol, systolic blood pressure, 

smoking, diabetes mellitus and use of anti-hypertensive medication

Model 2: add aPWV

aPWV: aortic pulse wave velocity

Discussion

In the present study performed in a large population of elderly subjects, we found that measurements 

of aortic stiffness in addition to traditional cardiovascular risk factors led to minor reclassification of 

subjects within 10-year cardiovascular disease risk categories. 
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Aortic stiffness has been associated with cardiovascular morbidity and mortality in hypertensive 

subjects20, patients with end-stage renal disease21, in patients with diabetes mellitus22 and in 

the general population3,4,23,24. Consequently, aortic stiffness has been proposed as an addition 

to the traditional risk factors for the prediction of cardiovascular disease. Previous findings of 

the Rotterdam Study3 reported a slight increase of the c-index when aortic stiffness was added 

to prediction models containing conventional cardiovascular risk factors. Also in hypertensive 

subjects, an increase in the area under the curve (AUC ) for cardiovascular disease was shown 

when aPWV was added to the Framingham Risk Score20. The recent guidelines for diagnosis and 

treatment of hypertension6 have suggested that an aPWV higher than 12m/s might be considered 

as a marker of target organ damage and a very recent multicentric study has suggested normal 

and reference values for PWV in large European populations25. However, it is still not completely 

clear whether adding aortic stiffness measurement to the daily practice is of clinical value for the 

individual patient. Therefore, we investigated the possible clinical predictive value of aortic stiffness, 

beyond traditional risk factors through reclassification of subjects within the Framingham risk 

categories, determining the percentages of subjects moving into a higher or lower risk category.

Table 4: Coronary heart disease risk reclassification comparing the Framingham risk model 

with the model additionally including aPWV 

10-Year Risk categories for FRS + aPWV Total n

reclassified 

(%)

10- Year risk for FRS 0-10%

(low)

10-20%

(intermediate)

>20%

(high)

0-10% Total n 1565 81 0 81

(low) (%) (95) (5) - (5)

Observed 

risk (95% CI)

0.05 (0.04-

0.07)

0.12 (0.06-

0.23)

NA

10-20% Total n 50 765 29 79

(intermediate) (%) (6) (91) (3) (9)

Observed 

risk (95% CI)

0.18 (0.09-

0.35)

0.13 (0.11-0.17) 0.19 (0.08-

0.44)

>20% Total n 0 20 339 20

(high) (%) - (6) (94) (6)

Observed 

risk (95% CI)

NA 0.07 (0.01-0.41) 0.30 (0.24-

0.36)

aPWV: aortic pulse wave velocity; n: number; FRS: Framingham Risk Score; NA: not applicable
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We confirmed the association between aortic stiffness and the risk of cardiovascular disease in a 

population of elderly. However, we found a minor reclassification when adding aortic stiffness to 

the Framingham risk covariates, suggesting low additional value of aortic stiffness in the clinical 

management of CHD in the elderly. The minor reclassification showed in this study could have 

several explanations. First, the prognostic value of several predictors of cardiovascular disease, as 

aortic stiffness, might decrease with age, due to selective survival and the influence of co-morbidity 

on risk factor levels. Therefore, we cannot exclude that aortic stiffness could be used for the clinical 

management of CVD in younger subjects. This has been suggested in a recent study performed 

within the framework of the Framingham Heart Study26, which showed that the addition of aortic 

stiffness to standard CVD risk factors improved model fit and resulted in a well-calibrated model 

with improved risk discrimination and risk classification in middle aged subjects. Second, it has 

been suggested that the association between a single risk factor and the outcome must be much 

higher than we traditionally find in observational studies to be useful in predicting absolute risk for 

individual patients27. Therefore, the measurement of aortic stiffness alone might not be adequate 

to improve cardiovascular risk prediction above traditional factors, but could still be adequate in 

combination with other additional risk factors and/or non-invasive tests. In accordance with this, 

the Atherosclerosis Risk in Communities (ARIC) Study28 added multiple non-traditional risk factors 

and markers of subclinical disease to traditional risk factors. No single risk marker alone could 

be identified that improved risk prediction, while addition of a set of markers was able to improve 

prediction. Third, the present study is an extension of a previous report of the Rotterdam Study3, 

however the association of aortic stiffness with cardiovascular disease was somewhat smaller in 

the present study as compared to the previous report, possibly due to a longer follow-up.

Moreover, some methodological limitations need to be considered. First, we choose to refit a 

model based on Framingham risk factors to stratify our population in the well known risk 

categories, because previous research within the Rotterdam study showed that application of the 

original Framingham Risk Score led to systematic overestimation of CHD risk in men29. Second, we 

restricted the predictors in the model to components of this Framingham Risk Score and included, 

age, gender, systolic blood pressure, use of anti-hypertensive medication, total cholesterol, 

high-density (HDL) cholesterol, diabetes mellitus and current smoking (yes/no). For this reason 

we did not include other risk factors for coronary heart disease, including kidney function, body 

mass index, diastolic blood pressure or measures of atherosclerosis as the carotid intima media 

thickness. Third, information on measures of stiffness was not available for all subjects who visited 

the research center. It might be that information was missing mostly in those subjects with a higher 

cardiovascular risk load. Fourth, the measurements of aortic stiffness were performed only once; 

it might be speculated that the use of multiple measurements of aortic stiffness could improve 

accuracy and precision. Finally, these results are obtained in a Caucasian population and therefore 

the results cannot be extrapolated to other populations.
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In the present study, we found a limited additional prognostic role of aortic stiffness beyond the 

traditional cardiovascular risk factors in a population of elderly subjects. Therefore, aortic stiffness 

has no additional value in cardiovascular risk stratification. Considering the increasing interest for 

functional arterial measurements further studies in larger cohorts, including also younger subjects 

are needed to determine the role of aortic stiffness in cardiovascular disease prediction.
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Cardiovascular morbidity and mortality is increasing due to aging populations, consequently 

cardiovascular disease remains the single leading cause of death worldwide.1,2 The main risk 

factors for cardiovascular disease are tobacco use, obesity, high blood pressure, diabetes mellitus 

and raised lipids, with an attributable risk of 80% for these risk factors. A large proportion of 

cardiovascular disease is preventable by addressing these risk factors.3 

The leading cardiovascular risk factor is raised blood pressure, to which 16.5% of global deaths 

can be attributed.4 The relationship of blood pressure components to cardiovascular disease is 

more complex than initially thought. Not only the two extremes, systolic blood pressure (SBP) and 

diastolic blood pressure (DBP) of the arterial pulse wave but also the pulsatile component, pulse 

pressure  defined as the difference between SBP and DBP, play a role in predicting cardiovascular 

disease, mostly in aging populations.5 Pulse pressure is regarded as surrogate measure of arterial 

stiffness.6

This thesis is focused on arterial hemodynamics, including blood pressure and arterial stiffness. 

First we attempt to unravel the genetic architecture of blood pressure and arterial stiffness through 

genome-wide association (GWA) studies. Second, we describe the relationship between blood 

pressure and arterial stiffness and finally we focus on the clinical consequences.

This discussion puts the results of our research in perspective of the literature, addresses potential 

clinical implications, elaborates on methodological considerations and provides directions for 

future research.
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Part I: Genetic association studies on arterial hemodynamics

Blood pressure regulation and hypertension

Hypertension is a common disease with an increasing prevalence with aging: the estimated 

prevalence is 50-70% in the elderly.7 Despite extensive physiologic investigation, the primary 

determinants of this trait as well as the factors which determine specific clinical outcomes, remain  

partly understood. For most common diseases, the risk of an individual is influenced by multiple 

genetic and environmental factors. Although many mutations are known, blood pressure does 

not typically segregate in families  consistent with mendelian transmission and a variety of factors 

such as salt intake, age, gender and body mass index can chronically influence blood pressure.8 

(Figure 1)

 

Figure 1. Multifactorial model of blood pressure determination

The substantial heritability of blood pressure (30-60%) has prompted extensive efforts to identify 

its genetic architecture to unravel the pathogenesis of hypertension.9,10  Several approaches have 

been used to search for genes associated with individual blood pressure variation in the general 

population, but provided limited consistent evidence of loci.11 

Family based studies with rare high or low blood pressure syndromes have identified mutations 

with gain or loss of function in several renal sodium handling regulatory genes and steroid hormone 

metabolism (CYP11B112, CYP11B213, WNK1/414, KLHL315,16, CUL315, SCNN1B17, CYP17A118, 

HSD11B219, NR3C220, KCNJ521), providing important insights into the mechanisms of blood 

pressure regulation and in particular a central role of the kidney.8 Two of these renal sodium 

handling genes (KCNJ122, coding for potassium channel and WNK123, member of WNK subfamily 

of serine/threonine protein kinase controlling transport of sodium and chloride ions) have been 

found to be associated with blood pressure levels in the general population. 

Several candidate genes have been investigated for blood pressure variation in the general 

population24,25 but failed to replicate.11 Therefore, the vast majority of the genetic contribution to 

variation in blood pressure in the general population remained unexplained. Several reasons for 

the limited replication have been proposed, including population stratification, variable linkage 

disequilibrium between polymorphism being studied and the true causal variant, gene-gene and 

gene-environment interactions, weak genetic effects and lack of power.11
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With the introduction of GWA studies, a powerful approach for identifying genetic loci for common 

diseases and quantitative traits became available.26 Large-scale GWA studies in which hundreds 

of thousands of common genetic variants are genotyped and analyzed for disease association 

have shown great success in identifying genes associated with common diseases and traits. 

In chapter 2 we describe GWA studies for blood pressure and hypertension. In chapter 2.1 

we used the framework of the Cohorts for Heart and Aging Research in Genetic Epidemiology 

(CHARGE) consortium, comprised of the Atherosclerosis Risk in Elderly study (ARIC), Age, 

Gene/Environment Susceptibility-Reykjavik study (AGES), Cardiovascular Health Study (CHS), 

Framingham Heart Study (FHS) and the Rotterdam Study (RS). In chapter 2.2 we extend this to a 

bigger collaboration, the International Collaboration on Blood Pressure (ICBP) consortium.

We identified several novel loci for SBP, DBP and hypertension in a GWA meta-analysis of more 

than 29,000 subjects in the framework of CHARGE, with replication in an independent consortium, 

Global BPgen consortium27, with almost 35,000 subjects. We showed genome-wide significant 

associations for four novel loci for SBP, six loci for DBP and one locus for hypertension. Table 1 

provides a brief overview of the loci for blood pressure and hypertension, including the results from 

Global BPgen consortium. The top ten risk alleles were associated with about 1 and 0.5 mmHg 

increase per risk allele in SBP and DBP, respectively. Although we presented multiple variants with 

a substantial joined effect on blood pressure, the effect sizes of the individual common alleles were 

small and explained a small proportion of the blood pressure variation. Further efforts to identify 

additional alleles associated with blood pressure will require larger GWA studies.

To increase the sample size, a new collaboration between CHARGE and Global BPgen was 

formed, the ICBP consortium. Chapter 2.2 described this GWA analyses of SBP and DBP, which 

used a multi-stage design in 200,000 individuals of European descent and identified 16 novel loci 

and brought the total number of identified variants with blood pressure up to 29. (Table 1) Nine 

loci of these 29 were confirmed in individuals from East-Asian ancestry and six loci in individuals 

from South-Asian ancestry. A risk score derived from these 29 associations was significantly 

associated with hypertension, blood pressure related organ damage including left ventricular wall 

thickness and clinical cardiovascular disease including stroke and coronary artery disease. These 

29 SNPs explained 0,9% of the phenotypic variation. Calculations estimated that there are up to 

116 independent blood pressure variants with effect sizes similar to those reported in this paper, 

which can explain up to 2.2% of the phenotypic variance for SBP and DBP. 

These studies demonstrated that GWA analyses are successful in identifying variants for complex 

traits and identified variants have clinical relevance, however we also demonstrated that there is 

still an amount of work necessary in identifying variants related to blood pressure and even if we 

identify those variants the explained variance is limited.



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 179

General discussion

In chapter 2.3 we describe a candidate gene analyses of the human 3beta-hydroxysteroid 

dehydrogenase type 1 (HSD3B1) gene, which was suggested as gene of interest for blood 

pressure regulation with circadian clock malfunction.28 We showed that HSD3B1 expression was 

minimal or absent in adrenocortical tissues, and was not stimulated by adrenocorticotropin or 

angiotensin II. Subsequently, we selected six tagging SNPs in the HSD3B1 gene and performed 

analyses in the RS and Erasmus Rucphen family study (ERF). No variants were associated with 

blood pressure or the occurrence of hypertension. These results were confirmed with a lookup 

in the ICBP consortium. To conclude, we deny an association of human 3beta-hydroxysteroid 

dehydrogenase type 1 (HSD3B1) gene with aldosterone production or blood pressure.

Table 1. Genes implicated to be associated with blood pressure

Consortium SBP DBP

CHARGE29 ATP2B1, CYP17A1, PLEKHA7, 

SH2B3

ATP2B1, CACNB2, CSK-ULK3, 

SH2B3, TBX3-TBX-5, ULK4

Global BP gen27 MTHFR, CYP17A1, PLCD3  FGF5, c10orf107, SH2B3, CYP1A2, 

ZNF652

ICBP30 SLC39A8, ATP2B1, GNAS-EDN3, 

CYP17A1-NT5C2, MTHFR-NPPB, 

HFE, C10orf107, FGF5, CYP1A1-

ULK3, CACNB2(3´), SH2B3, 

FURIN-FES, FLJ32810-TMEM133, 

PLEKHA7, ADM, NPR3-C5orf23, 

EBF1, PLCE1, BAT2-BAT5, MOV10, 

ZNF652, CACNB2(5´), MECOM, 

GOSR2

SLC39A8, ATP2B1, GNAS-EDN3, 

CYP17A1-NT5C2, MTHFR-NPPB, 

HFE, C10orf107, FGF5, CYP1A1-

ULK3, CACNB2(3´), SH2B3, 

FURIN-FES, FLJ32810-TMEM133, 

PLEKHA7, NPR3-C5orf23, EBF1, 

BAT2-BAT5, MOV10, ZNF652, 

TBX5-TBX3, CACNB2(5´), JAG1, 

GUCY1A3-GUCY1B3, MECOM, 

SLC4A7, ULK4
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Arterial stiffness

There is an increasing interest in the genetic background of arterial stiffness. This is challenging 

job due to the heterogeneity of the arterial tree resulting in phenotypic variation between central 

and distal arteries, but also between aortic compartments.31 Arterial stiffness is a heritable trait 

with estimations of 25-40% heritability,32,33 largely independent of the influence of blood pressure, 

age and other cardiovascular risk factors. Genetic determinants of blood pressure have been 

investigated, but steady and pulsatile components of blood pressure have separate physical 

determinants and it is reasonable to expect different genetic background as well. Studies on 

the association between genetic polymorphisms and arterial stiffness could provide significant 

information about the mechanism of arterial stiffness and the role of genetics in accelerated aging. 

Genetic factors may directly influence the structure of the arterial wall or act indirectly through age, 

blood pressure, smoking, cholesterol levels, glycaemia and other classical risk factors.34	

Several studies investigated genetic variants for involvement in the pathophysiology of arterial 

stiffness.35 The renin angiotensin aldosterone system (RAAS), which is involved in the blood 

pressure control, cell proliferation, matrix production and vascular hypertrophy, has been thought 

to have a major role in arterial stiffening.36,37 Polymorphisms in the angiotensin converting enzyme 

(ACE) gene38-42, angiotensinogen (AGT) gene43,44, the angiotensin II type 1 receptor(AGTR1) 

gene39,45-47 and the aldosterone synthase (CYP11B2) gene47-50, have been investigated, however 

the results are inconsistent, as both positive and negative associations have been reported. 

Other non-matrix related genetic variants, genes assumed to be involved in cell proliferation, 

vascular hypertrophy and affecting functional properties as blood pressure regulation, have been 

studied with arterial stiffness and included nitric oxide synthase (NOS)51-53, beta 2-adrenoreceptor 

(ß2-AR)54,55, endothelin (ET)56,57, endothelin receptors (ETaR and ETbR)57,58 and G-proteins.59

Genetic variations in extracellular matrix proteins or genes that modulated structural changes in 

proteins have been studied for evidence that they affect the arterial wall remodeling process. Elastin 

and collagen are the main extracellular matrix proteins of the vessel wall, they can be synthesized 

the novo, but are also susceptible to enzymatic degradation by enzymes including elastases and 

matrix metalloproteinases (MMPs). The elastin gene (ELN)60 and gene encoding collagen type 1A 

(COL1A)61 have both been associated with arterial stiffness in the general population. A variant in 

the COL4A1 has been identified with one of the first GWA analyses.62 The gene coding fibrillin 1 

(FBN1)63,64, the disease gene for Marfan’s syndrome, has also been associated with arterial stiffness 

in healthy subjects. Matrix homeostasis is a critical determinant of the mechanical properties of 

the blood vessels, the mechanisms whereby matrix proteins are deposited and turned over in the 

vessel wall are likely to play a role in the process of arterial stiffening. The genetic variation of the 

activity of MMPs, and then especially MMP365 and MMP966,67 has been extensively investigated 

and shown to be associated with increased age-related arterial stiffening.

However, most of the mechanisms linking these above mentioned gene polymorphisms to arterial 

wall properties have remained unclear or the association is waiting to be confirmed in much larger 

populations. Therefore, we performed GWA studies for arterial stiffness, which are described in 

chapter 3. 
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In chapter 3.1 we performed a GWA study of pulse pressure, a surrogate measure of arterial 

stiffness of the main arteries and MAP, a weighted average of SBP and DBP, in the framework 

of the ICBP consortium. We identified four novel loci for pulse pressure, two novel loci for mean 

arterial pressure (MAP) and one novel locus for both traits, and 21 loci for PP and MAP previously 

associated with SBP and DBP. (Table 2) The novel loci for MAP were strongly associated with SBP 

and DBP, reflecting the high intercorrelations among these blood pressure traits. On the other 

hand for three of the novel loci found for PP, the estimated effects on SBP were in the opposite 

direction to the effects on DBP, suggesting new genetic pathways underlying blood pressure 

variation. The risk score containing the 10 independent SNPs (novel and already known from SBP 

and DBP associations), was associated with prevalent hypertension, left ventricular wall thickness, 

incident stroke and coronary heart disease, confirming the clinical relevance of pulse pressure.

In chapter 3.2 we described GWA study for aortic stiffness, measured by the carotid femoral 

pulse wave velocity PWV (cfPWV), the golden standard measurement of arterial stiffness in 9 

community-based cohorts (AGES, Baltimore Longitudinal Study of Aging (BLSA), ERF, FHS, 

Health Aging and Body Composition (HABC), Heredity and Phenotype Intervention (HAPI), RS-I, 

RS-II, SARDINIA) and replicated in two cohorts (Anglo Cardiff Collaborative Trial (ACCT), Asklepios 

Study (AS)). We identified common genetic variation in a locus in the BCL11B gene desert, which is 

associated with higher cfPWV and related cardiovascular disease events, including coronary artery 

disease and heart failure. We performed sequencing of this region and two of this non-coding 

RNAs are expressed in relevant human cardiac and vascular tissues and cell lines, including full 

thickness aortic rings, aortic smooth muscle cells, cardiac fibroblasts and HUVECs. We indicated 

that the gene desert of VRK1-BCL11B harbors a regulatory locus that modulated aortic stiffness.

Table 2. Genes implicated to be associated with arterial stiffness or MAP

Trait Novel loci Previous association SBP/DBP

Pulse pressure68 PIK3CG, ADAMTS8, CHIC2, NOV, 

FIGN

NPR3-C5orf23, PLCE1, 

CUP17A1-NT5C, ATP2B1, GOSR2

MAP68 MAP, ADRB1, FIGN MTHFR-NPPB, SLC4A7, 

MECOM, FGF5, SLC39A8, 

NPR3-C5orf23, EBF1, HFE, 

CACNB2(3’),C10orf107, CYP17A1-

NT5C2,PLEKHA7, FJ32810-

TMEM33, ATP2B1, ATXN2, 

TBX5-TBX3, CSK, FES, JAG1, 

GNAS-EDN3  

PWV69 BCL11B -

MAP: mean arterial pressure; SBP systolic blood pressure; DBP diastolic blood pressure; PWV 

pulse wave velocity
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We have demonstrated that specific components of blood pressure have different genetic 

determinants, that the pulsatile component is modulated by in part a different set of genes. 

Genetic variation of pulse pressure could provide clues for the pathophysiology of arterial stiffness. 

Although it has been shown that arterial stiffness is a hereditable trait, it remains difficult to link it 

consistently with specific genetic variants. This could have diverse reasons. First, the heterogeneity 

of the vascular tree, reflects different phenotypes and is therefore dependent of the place of 

measurement. The GWA study on pulse pressure used the blood pressure measurements of the 

brachial artery, whereas the GWA study on arterial stiffness used cfPWV and therefore combines 

the thoracic part of the aorta with the abdominal part en even included part of the iliac arteries. 

However, the pulse pressure loci were also associated with cfPWV and the other way around, 

suggesting that the place of measurement did not have a big influence. Second, the polygenic 

nature of arterial stiffness and the gene-gene and gene environment interactions, make it difficult 

to identify the contribution of one specific gene and can explain the inconsistencies between single 

gene studies. Finally, in the light of the large consortia, the GWA of arterial stiffness has been 

performed in a relatively small sample size and an increase in sample size could help to identify 

more genetic loci.

The success of  genome wide association studies for common diseases

The rare high and low blood pressure syndromes have identified mutations with gain or loss of 

function in several renal sodium handling regulatory genes and steroid hormone metabolism. It has 

been suggested that similar mechanisms also contribute to the genetic origin of hypertension in the 

general population, however those mutations are very unlikely to explain much of the BP variation 

in the general population based on their low frequency in the general population.70 Interestingly, 

anti-hypertensive medication which is used in clinical practice, is partly based on these pathways 

identified in these rare syndromes and have shown to be useful in the treatment of hypertension 

in the general population

For common diseases, multiple genetic and environmental factors influence an individuals risk 

of being affected. The past years GWA analyses have dominated the search for new genes for 

complex diseases overtaking approaches of gene finding such as candidate gene and linkage 

analyses. Hypertension, blood pressure and arterial stiffness have been considered as complex (or 

polygenic) genetic traits71, where linkage studies and candidate gene studies were underpowered 

to find variants with modest effects for these traits.72 A model for the genetics of complex traits has 

been the common disease-common variant hypotheses, which implies that common disease is due 

to allelic variants with a frequency greater than 5% in the general population and a small individual 

effect size.73,74 GWA studies are designed to identify common variants through hypothesis-free 

association analyses of hundreds of thousands of single nucleotide polymorphisms (SNPs). (Figure 

2)
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Figure 2. Spectrum of allele frequency and effect size in genetic disease

GWA studies has been successful in identifying common variants for hypertension and blood 

pressure traits.70 The first large-scale attempt to identify genetic variants for hypertension was 

carried out by the Welcome Trust Case Control Consortium, but did not identify genome/wide 

significant variants.75 The need for larger sample sizes was recognized and large consortia were 

formed to share and pool data sets and decrease costs of genotyping. Up to date 43 variants 

associated with SBP, DBP and hypertension have been replicated in independent samples70 

including the genetic variants described in this thesis.29,30 

While increasing sample size will assist in finding new variants with smaller effects, there is still 

only a small fraction of the heritability explained.29,30; This could have several reasons. First, there 

will be true positives that remained undetected due to the use of the stringent threshold levels of 

statistical significance imposed in GWA studies (P < 5x10-8) to adjust for multiple testing. This 

has been shown with genetic scoring method in which genetic risk scores, including also many 

nongenome-wide significant SNPs, explained more of the variance than scores based only on 

very significant SNPs.76 Second, it is possible that common variants act on common disease at 

many loci, explaining little individually but explaining a much larger share of the trait or disease 

collectively. The complex genetic interactions between multiple loci rather than single genes make 

up the complex genetic basis of common diseases. However, hardly any genome-wide significant 

interaction has been reported. Lack of robust findings in gene-gene and gene-environment 

interactions are usually attributed to lack of power. Third, the focus of the ´missing´ heritability has 

shifted to the possible contribution of rare variants, where next generation sequencing comes in 

place.  It has been thought that rare variants (minor allele frequency < 5%) have substantial effect 

sizes.77 Moreover, with sequencing it is more likely to find the functional variants of the known loci. 

Next generation sequencing has recently been performed and results are underway.
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Most discovery efforts were carried out using samples of European origin. Hypertension is more 

common among people of African descent compared with European and consequently have 

African descents have a higher risk of hypertensive end-organ damage.78,79 Prior research has 

reported considerable difference in genetic patterns for blood pressure across ethnic groups. 

Identification of potential genetic loci implicated in hypertension provides an opportunity for new 

treatment and management strategies for this high-risk population, but also provides a new 

strategy in identifying genes and the underlying pathophysiology. Efforts have been made to 

improve the involvement of non-European samples, where using participants of African origin in 

the Candidate-gene Association Resource (CARe) has been a nice example.80

Risk scores based on the novel loci for blood pressure, were all associated with incident 

hypertension, blood pressure related organ damage and clinical cardiovascular disease. With 

this in mind the question arises if we can improve individual cardiovascular risk prediction with 

individual genetic profile. However, up to now, the predictive ability of genetic risk scores remains 

poor for cardiovascular disease81 (and most other common disease), because the variants found 

so far only accounted for a small proportion of genetic variance. The biggest gains from the GWAs 

strategy include our improved understanding of pathophysiology of genetic pathways involved in 

blood pressure regulation and not a better prediction. Genes and regions identified are novel and 

fill critical gaps in our current knowledge. Whether increasing sample size, complex modeling with 

interactions terms or sequencing will be successful in unraveling the missing heritability remains 

to be determined. Therefore, it is difficult to predict the clinical future of genetic cardiovascular risk 

prediction.82 
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Part II: Consequences of arterial hemodynamics

Age-related blood pressure changes

Hypertension is a common disease among the general population. The prevalence of hypertension 

increases with advancing age.7,83 Before 1990, only diastolic blood pressure was considered 

relevant in clinical practice. Elevated systolic pressure was considered normal and even an 

index of cardiac strength. From 1990 onwards research focused on elevated systolic pressure. 

Isolated systolic hypertension (ISH) is the most frequent form of hypertension in the elderly84, due 

to continuous increase in systolic blood pressure with advancing age, whereas diastolic blood 

pressure remains constant or declines, resulting in  a steep increase of pulse pressure.85 The most 

likely explanation for these changes is the age-related stiffening of the aorta.86-89 The association 

between arterial stiffness and hypertension is particular of interest, because the functional 

relationship is likely bidirectional and can be best described as feed forward in vicious cycle.90 

It is traditionally believed that arterial stiffening is accelerated by higher mean and systolic blood 

pressure because of structural and functional alterations in the walls of central elastic arteries in 

response to chronically elevated distending pressures.91 Research from the last years has shifted 

the paradigm to the other direction supporting that elevated arterial stiffness increases systolic 

blood pressure. Two large population based studies showed prospectively that arterial stiffening 

precedes and predisposes to longitudinal increase in systolic blood pressure and to future 

hypertension.92,93 In chapter 4.1 we confirmed the association of arterial stiffness with ISH and 

showed that subjects with ISH have a stiffer aorta compared to normotensive subjects, suggesting 

within the scope of the literature that arterial stiffening is an underlying pathophysiological cause 

of the increase in pressure.

We also found an association between aortic and carotid stiffness with combined systolic and 

diastolic hypertension (Sys/Dia HT), but the aorta was less stiff compared with subject with ISH 

and this difference was most pronounced at older age. Previous studies have shown that central 

‘elastic’ arteries are also stiffer in subjects with Sys/Dia HT94,95, it is less clear whether this increase 

of aortic stiffness is simply due to the higher operating pressure of hypertensive arteries. Studies, in 

which mean  pressure was reduced, showed a normalization of aortic stiffness values, suggesting 

that isobaric stiffness was normal in Sys/Dia HT subjects.96,97 This reinforces the hypothesis that 

Sys/Dia HT is not a pathophysiological result of stiff arteries and supports the idea that different 

pathophysiologies underly ISH and Sys/Dia HT.
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Orthostatic hypotension is common in the elderly98-101 and among hypertensive subjects.102,103 

Orthostatic hypotension has been associated with syncope104,105 and falls106, functional impairment 

and frequent cause of hospitalization.107 Orthostatic challenge is responsible for distribution of the 

blood to lower parts of the body, thereby decreasing cardiac filling and cardiac output.108 The arterial 

baroreflex has an essential role in the short-term regulation of blood pressure by adapting heart 

rate, stroke volume and vascular tone to changes in pressure.109,110 If baroreflex response does not 

properly function, blood pressure levels will fall. Baroreflex sensitivity decreases with advancing 

age and conditions as hypertension and diabetes mellitus may contribute as well. Arterial stiffness 

has been suggested to be involved in the pathophysiology of decreased baroreflex sensitivity,111-115 

leading to orthostatic hypotension.101 There is a higher pressure threshold in stiff arteries due to the 

more intense pressure change that is needed to distend the arterial wall.

In chapter 4.2 we elaborate on the relationship between orthostatic hypotension and cardiovascular 

diseases and all-cause mortality. Orthostatic hypotension increased the risk of coronary heart 

disease (CHD) and all-cause mortality. Several explanations are proposed, including orthostatic 

hypotension as an expression of the underlying cardiovascular disease. Second, the displacement 

of blood to the lower body with orthostatic challenge, gives a reduction in coronary and cerebral 

flow and may cause ischemia.100  

Arterial stiffness in cardiovascular disease

Heart failure is a growing health problem in the aging population with a substantial morbidity 

and mortality.116-119 To improve treatment of heart failure, the mechanisms regarding development 

of heart failure should be unraveled. In chapter 5.1 we confirmed the relation between SBP 

and heart failure and demonstrated that both pulse pressure and aPWV are associated with 

the development of heart failure. Several studies demonstrated the role of pulse pressure in 

predicting heart failure in the elderly.120-122 Several mechanisms have been proposed. First, aortic 

stiffness is involved in the pathogenesis of hypertension93,123 and is also related to myocardial 

infarction and diabetes mellitus124, which are all risk factors for developing heart failure. Secondly, 

increased aortic stiffness increases the pulsatile load on the left ventricle and could lead to left 

ventricular hypertrophy125 and concentric remodeling126, which is one of the major determinants 

of cardiac diastolic dysfunction. Finally, a decline in in aortic diastolic blood pressure could lead 

to subendocardial ischemia and extensive ventricular damage127 in the presence of coronary 

artery disease.  Pulse pressure predicted incident heart failure independently of SBP, suggesting 

additional predictive capacity of pulse pressure.  
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Population-wide primary prevention and individual health-care intervention strategies have 

contributed to declining mortality trends. If people at risk for developing cardiovascular disease 

can be identified and measures taken to reduce their cardiovascular risk, a vast majority of fatal 

and non/fatal cardiovascular events can be prevented. Arterial stiffness measurements have been 

suggested for use in the clinical practice to improve cardiovascular disease prediction for individual 

patients. Several studies have demonstrated that increased arterial stiffness is associated with 

elevated risk of cardiovascular disease, including CHD, stroke, cardiovascular mortality and heart 

failure (this thesis) in high risk samples, including patients with hypertension128, end-stage renal 

disease129 and diabetes mellitus130, but also in community based samples.131-134  In addition, the 

guidelines for diagnosis and treatment of hypertension have suggested that an aPWV higher 

than 12m/s might be considered as a marker of target organ damage.135 A multicentric study has 

suggested normal and reference values for PWV in a general population from European descent.136  

In chapter 5.2 we have added aortic stiffness to the Framingham risk factors and determined 

if the risk classification for CHD improved. However, the addition of aortic stiffness led to minor 

reclassification of subjects within 10-year cardiovascular disease risk categories, suggesting low 

additional value of aortic stiffness in the clinical management of CHD in the elderly.

Clinical practice

As described in chapter 5.2 we were not able to show an additive value of aortic stiffness in 

individual cardiovascular disease prediction. This does not mean that arterial stiffness is of no use 

in the clinical practice.

First, the study described above was performed in elderly subjects of general population. It has 

been suggested that the prognostic value of predictors of cardiovascular disease might decrease 

with age, due to selective survival and the influence of co-morbidity on risk factor levels. Therefore, 

it is well possible that aortic stiffness is of value for the prediction of cardiovascular disease in 

younger subjects. This has been suggested in two recent studies.137,138 They showed that the 

addition of aortic stiffness to standard cardiovascular disease risk factors improved the model fit 

and resulted in improved risk classification in younger subjects. Further, it has been suggested 

that arterial stiffness is of use for primary prevention of special risk groups, including asymptomatic 

hypertensive subjects.128,139 

Second, the measurement of aortic stiffness alone might not be adequate to improve cardiovascular 

risk prediction above traditional factors, but could still be adequate in combination with other 

additional risk factors and/or non-invasive tests. In accordance with this, the Atherosclerosis 

Risk in Communities (ARIC) Study140 added multiple non-traditional risk factors and markers of 

subclinical disease to traditional risk factors. A single risk marker that improved risk prediction was 

not identified, but addition of a set of markers improved prediction. 
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Third, increased arterial stiffness is, at least in part determined by risk factors, which are combined 

in the Framingham risk score, including smoking, high cholesterol, hypertension and diabetes 

mellitus. We could speculate to replace these factors in the risk score, with a single measurement 

easy to perform, such as aPWV measurement. Furthermore, reduction of blood pressure, 

hyperglycemia  and lipids may not reflect the true reduction in arterial wall damage. Normalization 

of the these standard cardiovascular risk factors can be achieved in weeks and thereby leading to 

a strong reduction in cardiovascular risk scores, but without any improvement on arterial stiffness, 

which may require a long-lasting correction. This temporal dissociation between the expected 

cardiovascular risk and true cardiovascular risk, can be improved by measurement of arterial 

stiffness.141

Fourth, aortic stiffness may have clinical value beyond cardiovascular disease prediction. Arterial 

stiffness can be a suitable target for novel risk reduction strategies.  Previous studies have 

suggested that aPWV attenuation improves survival.142 Non pharmacological treatment, which 

were able to reduce arterial stiffness, include exercise and dietary changes including weight loss, 

low salt diet, moderate alcohol consumption, dark chocolate and fish oil. The majority of existing 

drugs do not appear to lower aPWV in a blood pressure independent manner, however long-term 

blockade of the renin-angiotensin system may show some benefit.
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Future research 
An important limitation of GWAs is that genome wide significant SNPs often merely tag but do not 

provide direct information on the causal variants. To translate those signals to biological function, 

follow-up studies are necessary, also referred as ´post-GWA´ analyses. Figure 3 displays a diagram 

on which future research can be build. 

Figure 3. Translation of significant GWAs signals into disease mechanisms143 

Directions for future research for the clinical use of arterial stiffness with the use of predictive 

models and follow-up of patients with preventive treatment.
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Concluding remarks

The identification of genetic determinants underlying the heritability of arterial hemodynamics is far 

from complete. However, it has been more powerful than the genetic case-control analyses. We 

have identified several novel loci associated with arterial hemodynamics, which could improve our 

understanding on the pathogenesis of arterial hemodynamics.

We provided evidence supporting the hypothesis that arterial stiffness has his own genetic 

background, suggesting an at least partly independent pathophysiology from hypertension. 

Arterial stiffness increases the risk of cardiovascular disease and there are several potential clinical 

uses of arterial stiffness, but it did not improve risk prediction in the study described in this thesis.
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Summary

Cardiovascular disease is the number one leading cause of morbidity and mortality worldwide. 

A large proportion of cardiovascular diseases can be prevented by addressing risk factors and 

early assessment of target organ damage. The leading cardiovascular risk factor is raised blood 

pressure, however this relationship is more complex than only the two extremes, systolic and 

diastolic blood pressure. The pulsatile component of blood pressure plays  a role in predicting 

cardiovascular disease.

Chapter 1 gives an overview of the general principles of the hemodynamic system, the age-

related changes and the clinical consequences of age related vascular changes and genetic 

analysis of arterial hemodynamics.

Part 1 of this thesis is focused on the genetic risk factors for age related changes of the vascular 

system. 

In chapter 2.1 we identified several novel loci for SBP, DBP and hypertension in a GWA meta-

analysis of more than 29,000 subjects in the framework of CHARGE, with replication in an 

independent consortium, Global BPgen consortium, with almost 35,000 subjects. We showed 

genome-wide significant associations for four novel loci for SBP, six loci for DBP and one locus for 

hypertension. The top ten risk alleles were associated with about 1 and 0.5 mmHg increase per 

risk allele in SBP and DBP, respectively. Although we presented multiple variants with a substantial 

joined effect on blood pressure, the effect sizes of the individual common alleles were small and 

explained a small proportion of the blood pressure variation.

In chapter 2.2 we increased the sample size and extended the work  to a bigger collaboration, 

which used a multi-stage design in 200,000 individuals of European descent  in the framework 

of the International Collaboration on Blood Pressure (ICBP) consortium. We identified 16 novel 

loci and brought the total number of identified variants with blood pressure up to 29. Nine loci 

of these 29 were confirmed in individuals from East-Asian ancestry and six loci in individuals 

from South-Asian ancestry. A risk score derived from these 29 associations was significantly 

associated with hypertension, blood pressure related organ damage including left ventricular wall 

thickness and clinical cardiovascular disease including stroke and coronary artery disease. These 

29 SNPs explained 0,9% of the phenotypic variation. Calculations estimated that there are up to 

116 independent blood pressure variants with effect sizes similar to those reported in this paper, 

which can explain up to 2.2% of the phenotypic variance for SBP and DBP.



Arterial Hemodynamics in Aging Populations From genes to clinical practice | 203

Summary

In chapter 2.3 we describe a candidate gene analyses of the human 3beta-hydroxysteroid 

dehydrogenase type 1 (HSD3B1) gene, which was suggested as gene of interest for blood pressure 

regulation in mouse with circadian clock malfunction. We showed that HSD3B1 expression was 

minimal or absent in adrenocortical tissues, and was not stimulated by adrenocorticotropin or 

angiotensin II. Subsequently, we selected six tagging SNPs in the HSD3B1 gene and performed 

analyses in the RS and Erasmus Rucphen family study (ERF). No variants were associated 

with systolic or diastolic blood pressure or the occurrence of hypertension. These results were 

confirmed with a lookup in the ICBP consortium. To conclude, we deny an association of human 

3beta-hydroxysteroid dehydrogenase type 1 (HSD3B1) gene with aldosterone production or blood 

pressure.

In chapter 3.1 we performed a GWA study of pulse pressure, a component of blood pressure 

which reflects arterial stiffness of the main arteries and mean arterial pressure (MAP), the steady 

component of blood pressure, within the framework of the ICBP consortium. We identified four 

novel loci for pulse pressure, two novel loci for MAP and one novel locus for both traits, and 21 loci 

for PP and MAP previously associated with SBP and DBP. The novel loci for MAP were strongly 

associated with SBP and DBP, reflecting the high intercorrelations among these blood pressure 

traits. On the other hand for three of the novel loci found for PP, the estimated effects on SBP were 

in the opposite direction to the effects on DBP, suggesting new genetic pathways underlying blood 

pressure variation. The risk score containing the 10 independent SNPs (novel and already known 

from SBP and DBP associations), was associated with prevalent hypertension, left ventricular wall 

thickness , incident stroke and coronary heart disease, confirming the clinical relevance of pulse 

pressure.

In chapter 3.2 we described GWA study for aortic stiffness, measured by the carotid femoral 

pulse wave velocity PWV (cfPWV), the golden standard measurement of arterial stiffness in 9 

community-based cohorts (AGES, Baltimore Longitudinal Study of Aging (BLSA), ERF, FHS, 

Health Aging and Body Composition (HABC), Heredity and Phenotype Intervention (HAPI), RS-I, 

RS-II, SARDINIA) and replicated in two cohorts (Anglo Cardiff Collaborative Trial (ACCT), Asklepios 

Study (AS)). We identified common genetic variation in a locus in the BCL11B gene desert, which is 

associated with higher cfPWV and related cardiovascular disease events, including coronary artery 

disease and heart failure. We performed sequencing of this region and two of this non-coding 

RNAs are expressed in relevant human cardiac and vascular tissues and cell lines, including full 

thickness aortic rings, aortic smooth muscle cells, cardiac fibroblasts and HUVECs. We indicated 

that the gene desert of VRK1-BCL11B harbors a regulatory locus that modulated aortic stiffness.
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Part 2 of this thesis is focused on the cardiovascular consequences of age related changes of the 

vascular system.

The association between arterial stiffness and hypertension is of interest, because the functional 

relationship is likely bidirectional and can be best described as feed forward in vicious cycle. In 

chapter 4.1 we confirmed the association of arterial stiffness with isolated systolic hypertension 

(ISH) and showed that subjects with ISH have a stiffer aorta compared to normotensive subjects 

and subjects with combined systolic and diastolic hypertension. This difference was most 

pronounced at older age.

Since orthostatic hypotension is common in elderly and among hypertensive subjects, we 

elaborate in chapter 4.2 on the relationship between orthostatic hypotension and cardiovascular 

diseases and all-cause mortality. Orthostatic hypotension increased the risk of coronary heart 

disease (CHD) and all-cause mortality.

Heart failure is a growing health problem in the aging population. To improve treatment of heart 

failure, the mechanisms regarding development of heart failure should be unraveled.  In chapter 

5.1 we confirmed the relation between SBP and heart failure and demonstrated that both pulse 

pressure and aPWV are associated with the development of heart failure.

Population-wide primary prevention and individual health-care intervention strategies for 

cardiovascular disease have contributed to declining mortality trends.  If people at risk for developing 

cardiovascular disease can be identified and measures taken to reduce their cardiovascular risk, 

a vast majority of fatal and non/fatal cardiovascular events can be prevented. In chapter 5.2 we 

have added aortic stiffness to the Framingham risk factors and determined if the risk classification 

for CHD improved. However, the addition of aortic stiffness led to minor reclassification of subjects 

within 10-year cardiovascular disease risk categories, suggesting low additional value of aortic 

stiffness in the clinical management of CHD in the elderly.

In chapter 6 we discussed the main findings of the studies presented in this thesis, we puts the 

results of our research in perspective of the literature, addresses potential clinical implications, 

elaborates on methodological considerations and provides directions for future research.
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Hart- en vaatziekte is wereldwijd doodsoorzaak nummer één. Een groot gedeelte hiervan is te 

voorkomen door het behandelen van risicofactoren en het vroeg herkennen van schade aan 

doelorganen. Hoge bloeddruk is de belangrijkste risicofactor; deze relatie bestaat uit meer dan 

alleen de systolische en diastolische bloeddruk. De pulsatiele component van bloeddruk speelt 

ook een rol in het voorspellen van hart- en vaatziekten.

Hoofdstuk 1 geeft een overzicht van de algemene principes van arteriële hemodynamiek met 

hierbij de leeftijdsafhankelijke veranderingen en de klinische consequenties hiervan  en daarnaast 

uitleg over de genetische analyses. Het hoofdstuk eindigt met de doelen van dit proefschrift.

Deel 1 van dit poefschrift beschrijft de genetische risicofactoren voor leeftijdsafhankelijke 

veranderingen van het vasculaire stelsel.

In hoofdstuk 2.1 beschrijven we genoom brede meta-analyses bij 29,000 deelnemers van het 

CHARGE consortium en met replicatie in een onafhankelijk consortium, Global BPgen, met 

bijna 35,000 deelnemers. We hebben meerdere nieuwe gen loci gevonden voor systolische en 

diastolische bloeddruk  en hypertensie. Er waren vier loci significant geassocieerd met systolische 

bloeddruk,  zes loci met diastolische bloeddruk en een locus met hypertensie. De top tien risico 

allelen gaven een toename van 1 en 0.5mmHg per allel in respectievelijk systolische en diastolische 

bloeddruk. De effecten van de individuele allelen waren klein en verklaarden een klein gedeelte van 

de bloeddrukvariatie, maar tezamen hebben de risico allelen een substantieel effect. 

In hoofdstuk 2.2 beschrijven we de uitbreiding van de genoom brede meta-analyses naar 

een meerdere stappen analyse in bijna 200,000 deelnemers van Europese afkomst van het 

internationale samenwerkingsconsortium voor bloeddruk. We hebben 16 nieuwe genetische 

loci gevonden, waarmee het totaal aantal gevonden varianten op 29 voor bloeddruk kwam. 

Negen van deze loci hebben we bevestigd in deelnemers van Oost-Azië afkomst en zes loci in 

deelnemers van Zuid-Afrikaanse afkomst. Een risico score van de 29 in totaal gevonden varianten 

is significant geassocieerd met hypertensie, bloeddruk gerelateerde orgaanschademarkers 

zoals linker ventrikel wanddikte en hart- en vaatziekten zoals beroerte en coronairlijden. Deze 29 

varianten verklaren ongeveer 0.9% van de bloeddrukvariatie. Volgens berekeningen zijn er 116 

onafhankelijke bloeddrukvarianten met dezelfde effect grootte als gevonden in deze paper, die 

samen in totaal 2.2% van de systolische en diastolische bloeddrukvariatie verklaren.
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In hoofdstuk 2.3 beschrijven we een kandidaat gen analyse van HSD3B1 gen, welke werd 

gesuggereerd als interessant gen voor bloeddruk regulatie in muizen met stoornis in regulatie van 

dagritme. We laten zien dat HSD3B1 expressie in bijnierweefsel minimaal tot afwezig is en dat dit 

niet gestimuleerd werd door adrenocorticotrofine of angiotensine II. Daarnaast selecteerden we 

zes SNPs uit de HSD3B1 gen en analyseerden deze SNPs in de Rotterdam en Erasmus Rucphen 

familie studie. Geen van de varianten waren geassocieerd met systolische of diastolische bloeddruk 

of hypertensie. Deze resultaten werden bevestigd in het internationale samenwerkingsconsortium 

voor bloeddruk. We vonden geen bewijs voor een verband tussen HSD3B1 gen met aldosteron 

productie of bloeddruk. 

In hoofdstuk 3.1 beschrijven we een genoom brede analyse van polsdruk, een component 

van bloeddruk die maat is voor arteriële vaatwandstijfheid van de grote vaten, en het gewogen 

gemiddelde van systolische en diastolische bloeddruk, de constante component van bloeddruk, 

in deelnemers van het internationaal samenwerkingsconsortium voor bloeddruk. We hebben 

vier nieuwe loci voor polsdruk, twee nieuwe loci voor het gewogen gemiddelde van systolische 

en diastolische bloeddruk en één locus voor beide gevonden. Tevens vonden we 21 loci voor 

polsdruk en gewogen gemiddelde voor systolische en diastolische bloeddruk die eerder waren 

gevonden voor  systolische en diastolische bloeddruk. De nieuw gevonden loci voor gewogen 

gemiddelde van systolische en diastolische bloeddruk waren sterk geassocieerd met systolische 

en diastolische bloeddruk, waarmee de sterke correlatie tussen deze metingen werd bevestigt. 

Daarentegen, de drie nieuw gevonden loci voor polsdruk hadden een tegengesteld effect in 

systolische bloeddruk ten opzichte van diastolische bloeddruk, waarmee nieuwe genetische paden 

onderliggende bloeddruk werden gesuggereerd. De risico score met de tien onafhankelijke loci (de 

nieuw gevonden en al bekende voor systolische en diastolische bloeddruk) waren geassocieerd 

met hypertensie, linker ventrikel wanddikte, beroerte en coronairlijden en bevestigd de klinische 

relevantie van polsdruk metingen.   

In hoofdstuk 3.2 beschrijven we een genoom brede meta-analyse van stijfheid van aorta, 

gemeten via pols golf snelheid van de carotis naar femoralis slagader, de gouden standaardmeting 

van arteriële vaatwandstijfheid, in negen populatie studies (AGES, Baltimore Longitudinal Study of 

Aging (BLSA), ERF, FHS, Health Aging and Body Composition (HABC), Heredity and Phenotype 

Intervention (HAPI), RS-I, RS-II, SARDINIA). We vonden een verband tussen genetische variatie in 

het niet-coderende deel van BCL11B gen met hogere vaatwandstijfheid en daarbij gerelateerde 

hart- en vaatziekten als coronairlijden en hartfalen. Sequencen van de BCL11B regio, tonen 

dat twee RNAs tot uiting komen in menselijke hart- en vaatweefsel cellijnen, met onder andere 

aorta ring, gladde spier cellen van de aorta, hart fibroblasten en HUVECs. We tonen aan dat het 

niet coderende deel van VRK1-BCL11B gen een regulatie locus bevat dat stijfheid van de aorta 

beïnvloed.
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Deel twee van dit proefschrift beschrijft de cardiovasculaire gevolgen van leeftijdsafhankelijke 

veranderingen van het vasculaire stelsel.

De relatie tussen arteriële vaatwandstijfheid en hypertensie gaat twee richtingen op en kan het 

best omschreven worden als een voortgaande vicieuze cirkel. In hoofdstuk 4.1 bevestigen 

we  het verband tussen arteriële vaatwandstijfheid en geïsoleerde systolische hypertensie  en 

laten we zien dat deelnemers met geïsoleerde systolische hypertensie een stijvere aorta hebben 

ten opzichte van deelnemers met een normale bloeddruk en deelnemers met gecombineerde 

systolische en diastolische hypertensie. Dit verschil is het grootst  op oudere leeftijd.

Orthostatische hypotensie komt veel voor bij ouderen en in patiënten met hypertensie. In 

hoofdstuk 4.2 beschrijven we de relatie tussen orthostatische hypotensie, hart en vaatziekten 

en algehele mortaliteit. Orthostatische hypotensie verhoogt het risico op coronaire hartziekten en 

algemene mortaliteit.

Hartfalen is een groeiend gezondheidsprobleem in de vergrijzende populatie. Om behandeling 

van hartfalen te verbeteren, zullen mechanismen tot het ontwikkelen van hartfalen moeten worden 

onderzocht. In hoofdstuk 5.1 bevestigen we de relatie tussen systolische bloeddruk en hartfalen, 

daarnaast laten we zien dat er een verband is tussen zowel polsdruk als arteriële vaatwandstijfheid 

met het ontwikkelen van hartfalen.

Zowel populatie brede primaire preventie en individuele gezondheidsinterventies voor hart- en 

vaatziekten hebben bijgedragen aan het verlagen van de mortaliteit aan hart- en vaatziekten. 

Als je gezonde mensen die het risico lopen voor het ontwikkelen van hart- en vaatziekten 

kan identificeren en behandeling kan geven om het risico te verlagen op hart- en vaatziekten, 

kan een groot gedeelte van dodelijke en niet dodelijke hart- en vaatziekte events worden 

voorkomen. In hoofdstuk 5.2 onderzoeken we de toegevoegde waarde van de metingen voor 

aorta vaatwandstijfheid aan de bekende Framingham risico factoren op de risicovoorspelling 

van coronaire hartziekten, door middel van reclassificatie van risicoclassificatie  modellen. Het 

toevoegen van aorta vaatwandstijfheid leidt tot minimale reclassificatie van 10-jaars risico op 

coronaire hartziekten. Aorta vaatwandstijfheid metingen hebben hiermee een lage toegevoegde 

waarde in het klinische beleid van coronaire vaatziekten bij ouderen.

In hoofdstuk 6 bespreken we de belangrijkste bevindingen van de studies in dit proefschrift 

tezamen met de recente literatuur, belichten we de klinische mogelijkheden, en geven we ideeën 

voor verder onderzoek. 
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Dankwoord
 

`Waar je aan begint, moet je ook afmaken ,̀ deze woorden zijn  me vaker door het hoofd geschoten 

dan ik vooraf had kunnen bedenken. Het waren de woorden van mijn vader als ik vroeger ergens vol 

enthousiasme mee begon en het heeft me het nodige doorzettingsvermogen gegeven. Ondanks 

alle hobbels op de weg naar de afronding van mijn promotie, heb ik dankzij deze woorden nooit 

de gedachte gehad om te stoppen met mijn promotie. Gelukkig had ik dan ook veel hulp, steun 

of sportieve afleiding van collega´s, vrienden en dierbaren. Op deze plaats wil ik graag iedereen 

bedanken, die betrokken is geweest bij het tot stand komen van mijn proefschrift. Waarschijnlijk 

lukt het me niet om in dit dankwoord iedereen de eer toe te kennen die ze toekomen, mocht ik je 

vergeten zijn,  bij deze hartelijke dank!

In de eerste plaats wil ik  mijn co-promoter, Dr. F.U.S. Mattace-Raso bedanken. Lieve Francesco, 

vanaf dag één heb je mij met jouw enthousiasme over onderzoek aangestoken. We hebben de 

afgelopen jaren nogal wat meegemaakt met hoogte- en dieptepunten, maar altijd zijn we blijven 

werken voor hetzelfde doel. Naast je intensieve begeleiding, dat je altijd te bereiken was voor alle 

vragen over onderzoek en je snelle respons, kon ik ook altijd terecht voor een warm woord, steun 

of gewoon gezelligheid. Ik heb bewondering voor je hoe je het afgelopen jaar na het verlies van 

Annet verder bent gegaan. Ik ben dan ook blij dat we de komende jaren collega´s blijven en verder 

werken aan het onderzoek, maar bovenal ook vrienden zijn.  

Mijn promotoren, Prof.dr. E.J.G. Sijbrands en Prof.dr. C.M. van Duijn. Beste Eric, je enthousiasme 

voor onderzoek straalt eraf. Meestal was je wat meer op de achtergrond betrokken omdat 

Francesco mijn eerste aanspreekpunt was,  maar je hield wel altijd mijn traject in de gaten en 

waren onze meetings een mooie intellectuele aanvulling. Dank ook voor je geduld op het moment 

dat het allemaal niet zo liep en je optimisme dat het goed zou komen, gelukkig ging het de laatste 

maanden in een stroomversnelling. Best Cock, ik was een geadopteerde onderzoeker op de 

genetische epidemiologie, maar dankzij jouw steun en kennis heb ik me hier altijd thuis gevoeld. 

Dankzij jouw begeleiding hebben we met de GWA projecten van bloeddruk een aantal mooie 

publicaties kunnen realiseren. Dank ook dat je wilde invallen als promotor en mijn niet-genetische 

stukken wilde beoordelen na het wegvallen van Jacqueline.

Prof.dr. J.C.M. Witteman, beste Jacqueline, jij was diegene die vertrouwen in me had en me na mijn 

Master onderzoek de mogelijkheid gaf om te starten met mijn promotieonderzoek. Daarnaast wist 

je ook altijd je vinger op de zwakke methodologische punten te leggen en daarmee mijn onderzoek 

te verbeteren. Ik vind het jammer dat je weg bent bij de Rotterdam Studie. Prof.dr. A. Hofman,  

beste Bert als hoofd van de research opleiding NIHES en hoofd van de Rotterdam Studie, heb jij 

mij de kans gegeven de eerste stappen van onderzoek te doen op je eigen afdeling Epidemiologie. 

Met je memorabele presentaties en enthousiasme kon ik me geen betere start wensen. 
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Prof.dr. F. Zijlstra, Prof.dr. G.A. Rongen en Prof.dr. O.H. Franco wil ik bedanken voor hun 

bereidheid om plaats te nemen in de kleine commissie en voor de inhoudelijke beoordeling van 

mijn proefschrift. Beste professor Zijlstra ik kijk ernaar uit om mijn opleiding tot cardioloog op 

uw afdeling te volbrengen. Dear professor Franco, thank you for reading my manuscripts as the 

successor of Jacqueline. Prof.dr. A.H.J. Danser en dr. Kofflard wil ik bedanken voor hun bereidheid 

plaats te nemen  in de grote commissie. Beste Jan, de afgelopen jaren zijn we bij een aantal 

projecten samen betrokken geweest. Ik wil je bedanken voor je altijd snelle beoordeling en reacties 

en het in de gaten houden van de tijdlijn. Beste dr. M.J.M.  Kofflard dank u wel voor de mogelijkheid 

om ervaring op te doen op de afdeling cardiologie in het Albert Schweitzer Ziekenhuis en uw steun 

voor de opleiding tot cardioloog. Prof.dr. A. Avolio, thank you for being part of the committee.

Alle co-auteurs wil ik bedanken voor hun bijdrage en waardevolle commentaar op de verschillende 

manuscripten. Speciaal wil ik Hans Hofland bedanken voor het samenwerken aan het HSD3B1 

project. Dank ook voor je geduld, omdat het precies op een moment kwam waarop ik persoonlijk 

niet mijn sterkste tijd had. Prof.dr. A. Hoeks en Prof.dr. R. Reneman, hartelijk dank voor al jullie 

constructieve adviezen en snelle respons voor mijn papers. In addition, I would like to thank all the 

members of the CHARGE blood pressure , AortaGen and ICBP consortium for the collaboration 

on the GWA projects. Especially, Georg Ehret, Louise Wain, Daniel Levy and Gary Mitchell, we 

spent many hours on the phone. I think I would recognize you more by voice than by appearance.

Graag wil ik ook gebruik maken van de gelegenheid om duizenden deelnemers aan het ERGO-

onderzoek te bedanken en de huisartsen en apothekers die de data beschikbaar hebben gesteld. 

Hun bijdrage is onmisbaar voor het ERGO-onderzoek. Daarnaast wil ik de dames van het ERGO-

centrum, onder leiding van Anneke Korving en de ERGO fup-sters bedanken voor hun inzet en 

voor de gezellige dagen op het ERGO-centrum. Anneke, het was altijd fijn om weer op het ERGO-

centrum te komen, met je hartelijke ontvangst was het altijd een feestje. Hannie, dank voor je altijd 

lieve woorden.  Natuurlijk een speciaal woord voor de dames van het cardiovasculaire blok. Lieve 

Inge, Toos en Saskia dank voor alle gezellige dagen, maar zeker ook leerzame tijd. Ik heb me altijd 

als onderdeel van het team gezien en ik maak nu grote indruk met mijn echo ervaring die ik bij jullie 

heb kunnen opdoen. Toos wat fijn dat je de foto´s wilt maken, na alles wat ik de afgelopen jaren 

van je werk heb gezien, kan ik alleen maar uitkijken naar deze foto´s.

Natuurlijk wil ik ook de dames van het secretariaat bedanken voor hun ondersteuning en de heren 

van het datamanagement en de automatisering voor de technische ondersteuning. Frank, bedankt 

voor de aanlevering van data. Nano, dank voor al je technische hulp als ik weer eens computer 

problemen had. Jolande Verkroost dank voor het aanleveren en verwerken van alle events, maar 

daarnaast ook altijd een woord van steun en uitlaatklep als ik het even niet meer zag zitten.
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Gedurende de jaren van mijn onderzoek heb ik het geluk gehad met veel verschillende collega´s 

samen te werken en maakte dat ik veel zin had om naar mijn werk te gaan. Ik ben alle (ex)-collega´s 

veel dank verschuldigd. In eerste plaats  mijn kamergenoten van het eerste uur, Quirijn en Charlotte, 

dank voor alle gezellige uurtjes. Sorry dat ik jullie wel eens van het werk heb gehouden met alweer 

een bizar verhaal van mij en dan vooral jullie nuchter commentaar. Ik hoor en zie de collega´s nog 

lachen over onze discussies. Bouwe, jij kwam na Charlotte.  Dank voor de echte mannenkamer 

vanaf toen met discussies over sporten en vooral het kijken van de tour de France, Olympische 

Spelen en het WK voetbal. Ik kan met recht zeggen dat kamer Ee21.28 de gezelligste , leukste, 

tofste kamer was van het Erasmus MC, maar wel met een luguber fracturen tintje. Verder wil ik 

ook graag andere collega´s van de hart- en vaatziekten groep Abbas, Isabella, Jan, Janine, Frank, 

Maarten, Maryam en Rachel bedanken. Dank voor alle constructieve kritiek gedurende hart- en 

vaatziekte besprekingen. Abbas, dank voor alle hulp bij de genetische analyses. Maryam, you 

were a very nice and pleasant colleague. Janine samen zijn we bezig geweest om het echoblokje 

uit te breiden, ik hoop dat er mooie data uitkomen. Maarten, dank voor alle laatste updates. Ik 

hoop je de komende jaren als collega cardioloog te zien. Natuurlijk wil ik ook mijn collega´s Albert-

Jan, Arfan, Ben, Daan, Eline, Elisabeth, Gabriella, Jory, Lintje, Marielle, Mark, Martina, Matthijs, 

Meike, Michiel, Monika, Monique, Renske, Rikje, Sandra, Seppe, Sjoerd, Toke, Vincent, Virginie 

en Wishal van de afdeling Epidemiologie bedanken. Naast alle beslommeringen herinner ik me 

vooral de gezellige borrels. Eline, dank je wel voor alle gesprekken, je was echt het zonnetje van 

de afdeling en gaf me altijd weer de broodnodige energie. Ik vind het super dat we bij dezelfde 

sportvereniging zitten . Ik hoop dat het een keer beter gaat met je blessure en we weer samen 

kunnen sporten. Elisabeth we zijn tegelijkertijd begonnen op de afdeling, dank voor alle gezellige 

uurtjes. Aaron and Najaf, thanks for all the help with the genetic analyses. I owe you some cake.

Naast mijn collega´s van de afdeling Epidemiologie, wil ik ook mijn collega´s van de afdeling Interne 

Geneeskunde bedanken. Ondanks dat ik geen kamer bij jullie had, voelde ik me altijd welkom en 

hadden we leuke discussies tijdens de research meeting, maar misschien nog meer buiten werktijd 

tijdens de borrels en fietstochten. Ilse en Jorie, dank voor alle gezellige uurtjes op de werkvloer, 

maar ook daarnaast. Met jullie kan ik mijn twee grootste hobby´s combineren, eten en sporten. 

Ik mag graag terugdenken aan alle fietstochten die we gemaakt hebben en jullie inspirerende 

woorden maar ook geduld als ik weer een berg aan het opzwoegen ben en jullie al lang boven 

staan te wachten. Ik kijk uit naar alle mooie tochten die we nog gaan maken, van Bourgondisch tot 

op de fiets. Luit, Thijs, Joep, Els, Koen mijn fiets staat klaar om nadat dit proefschrift is afgerond 

weer wat intensiever te gaan trainen. Mandy en Jeroen ik heb niet lang met jullie samen gewerkt, 

maar memorabel zijn wel de presentaties die we met zijn allen gemaakt hebben. Pieter, Lieke, 

Mariëlle, Ton, Joep, Wendy en Joost, ik vergeet het EK voetbal in Berlijn nooit meer. Edith en 

Carolien, dank voor al jullie hulp met de administratie. Zonder jullie was ik nu nog bezig.
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Ook wil ik mijn collega´s van de intensive care uit het Albert Schweitzer ziekenhuis in Dordrecht 

bedanken. Ik heb een super jaar achter de rug en ontzettend veel geleerd. 

Mijn nieuwe collega´s van de Cardiologie uit het Erasmus MC wil ik bedanken voor het warme 

welkom. Ik ben blij dat ik per 1 oktober mag beginnen met de opleiding.

Ferry Drop, super bedankt voor het ontwerpen van de voorkant en de lay-out. Het is precies 

geworden zoals ik het wilde!

Graag wil ik mijn vrienden bedanken voor alle steun en interesse. Annemieke, Els, Jacqueline en 

Marijn  (en natuurlijk hierbij ook Pieter en Martin) dank voor alle gezellige etentjes, weekendjes 

weg en afleiding. Ik vind het super dat we na onze opleiding nog steeds goede vrienden zijn, 

ondanks dat we allemaal onze eigen wegen gaan. We hebben wat afgelachen, maar  ook wel wat 

tranen gelaten. Dank jullie wel voor alle steun op het moment dat het even wat minder gaat. Els, 

ik kijk nog graag terug op onze huisgenoten tijd waarbij we beide onderzoek deden. Jacq, ik kijk 

ernaar uit dat we collega´s worden. Ilona, onze lekkere meidenavonden zijn zo fijn en heerlijk om 

even onze beslommeringen in de medische wereld te delen. Sandra, het is allemaal begonnen 

met badminton, maar gaat zo veel verder. Memorabel zijn onze stapavonden, maar tegenwoordig 

is het vooral lekker fietsen, wandelen en high-tea. Dank voor alle broodnuchtere relativering en 

gewoon even geen medische verhalen. Dieuwke vanaf de middelbare school zijn we al bevriend. 

Heerlijk dat jij altijd met je recht door zee benadering en nuchtere inslag, me een andere kijk op de 

zaak weet te geven

Dat sporten een belangrijk onderdeel van mijn leven is mag duidelijk zijn. Ik wil dan ook mijn 

sportvrienden bedanken voor alle afleiding van  de medische en onderzoek beslommeringen. Mijn 

waterpolovereniging heeft naast deze afleiding ook een inhoudelijke bijdrage geleverd door zeer 

enthousiast proefpersoon te zijn toen ik mijn echodiploma wilde behalen. Het waterpolodames 

team, sorry dat ik zo veel wedstrijden mis, maar dank dat jullie me bij de overige wedstrijden laten 

spelen. Agnes, Josephine en Lineke, dank voor alle gezellige etentjes en jullie regelmatige realiteit 

check, dat er ook een wereld is buiten het ziekenhuis. De triatlon vereniging, het is echt super 

hoe iedereen in zijn waarde wordt gelaten. Van beginner tot professionele atleet, we zijn allemaal 

welkom en krijgen de ruimte om te sporten en veel tips om ons te verbeteren. Wieb, dank voor alle 

gezellige avonden. Jean-Michel, Koos en Tom, dank voor alle sportieve tips en jullie geduld om 

met mij te sporten.
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Mijn paranimfen, Charlotte en Maxine. Lieve Charlotte, naast ex-kamergenoten en collega´s zijn 

we vooral ook vrienden. Ik vind het super dat je naast me wilt staan. Je staat altijd voor me 

klaar, met je kennis over alles en altijd snelle respons heb je me erg vaak geholpen. Ik hoop dat 

we in de toekomst nog veel vaker zullen samenwerken. Lieve Max, mijn kleine grote zus, dat je 

mijn paranimf zou worden stond vast op dag één dat ik aan mijn promotieonderzoek begon. Ik 

moest je alleen wel even overtuigen dat je toch echt niet veel inhoudelijks hoeft bij te dragen. 

Naast zus ben je ook mijn beste vriendin. Je bent altijd een voorbeeld voor mij geweest over wat 

je met doorzettingsvermogen kan bereiken. Ondanks alle problemen in onderwijswereld, sla je, 

je er goed doorheen. Een andere carrière is altijd nog een optie. Ik weet zeker dat je met jouw 

kwaliteiten alles kunt bereiken, heb vooral vertrouwen in jezelf.

Lieve Mam, waar moet ik beginnen met bedanken. Dank voor je onvoorwaardelijke steun en 

vertrouwen waarmee je me alle mogelijkheden hebt gegeven om me te ontwikkelen tot de persoon 

die ik nu ben. Nooit is iets te veel of te gek en je staat altijd achter mijn keuzes. Ik vind het super 

knap hoe je de afgelopen jaren staande hebt gehouden. Lieve pap, ik had zo graag gewild dat je 

bij mijn promotie aanwezig kon zijn. Rust zacht. Ik weet dat je trots op me was.

Germaine
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