1,973 research outputs found
Improving approximate matrix factorizations for implicit time integration in air pollution modelling
For a long time operator splitting was the only computationally feasible way of implicit time integration in large scale Air Pollution Models. A recently proposed attractive alternative is Rosenbrock schemes combined with Approximate Matrix Factorization (AMF). With AMF, linear systems arising in implicit time stepping are solved approximately in such a way that the overall computational costs per time step are not higher than those of splitting methods. We propose and discuss two new variants of AMF. The first one is aimed at yet a further reduction of costs as compared with conventional AMF. The second variant of AMF provides in certain circumstances a better approximation to the inverse of the linear system matrix than standard AMF and requires the same computational work
Human in the Loop: Interactive Passive Automata Learning via Evidence-Driven State-Merging Algorithms
We present an interactive version of an evidence-driven state-merging (EDSM)
algorithm for learning variants of finite state automata. Learning these
automata often amounts to recovering or reverse engineering the model
generating the data despite noisy, incomplete, or imperfectly sampled data
sources rather than optimizing a purely numeric target function. Domain
expertise and human knowledge about the target domain can guide this process,
and typically is captured in parameter settings. Often, domain expertise is
subconscious and not expressed explicitly. Directly interacting with the
learning algorithm makes it easier to utilize this knowledge effectively.Comment: 4 pages, presented at the Human in the Loop workshop at ICML 201
A Zooming Technique for Wind Transport of Air Pollution
In air pollution dispersion models, typically systems of millions of equations that describe wind transport, chemistry and vertical mixing have to be integrated in time. To have more accurate results over specific fixed areas of interest---usually highly polluted areas with intensive emissions---a local grid refinement or zoom is often required. For the wind transport part of the models, i.e.\ for finite volume discretizations of the transport equation, we propose a zoom technique that is positive, mass-conservative and allows to use smaller time steps as enforced by the CFL restriction in the zoom regions only
Geiten: Klim- en schuurmogelijkheden in de wei en in de stal
Op dit moment zijn er een aantal initiatieven en ideeën binnen de geitensector op het gebied van klim- en schuurmogelijkheden. Enkele voorbeelden zijn het gebruik van een (roterende) veeborstel,wandplanken in de stal en boomstammen in de weide. Klim- en schuurmogelijkheden worden echter nog niet op ieder bedrijf structureel toegepast. Barriëres om klim- en schuurmogelijkheden op het eigen bedrijf toe te passen zitten op gebied van arbeid, geld en praktische toepassing voor wat betreft bedrijfsvoering en bedrijfsgrootte. Naast de relevantie van klim- en schuurvoorzieningen in de stal en weide is ook aangegeven dat de mogelijkheid tot het schuilen in de stal en in de weide aandacht moet krijgen. Vanuit de sector wordt benadrukt dat de meest effectieve welzijnsverbeteringen gebaseerd zijn op aanpassingen/ maatregelen die dicht bij de natuur van de geit staan; gebruik de 'techniek van de natuur'
Solving Vertical Transport and Chemistry in Air Pollution Models.
For the time integration of stiff transport-chemistry problems from air pollution modelling, standard ODE solvers are not feasible due to the large number of species and the 3D nature. The popular alternative, standard operator splitting, introduces artificial transients for short-lived species. This complicates the chemistry solution, easily causing large errors for such species. In the framework of an operational global air pollution model, we focus on the problem formed by chemistry and vertical transport, which is based on diffusion, cloud-related vertical winds, and wet deposition. Its specific nature leads to full Jacobian matrices, ruling out standard implicit integration.
We compare Strang operator splitting with two alternatives: source splitting and an (unsplit) Rosenbrock method with approximate matrix factorization, all having equal computational cost. The comparison is performed with real data. All methods are applied with half-hour time steps, and give good accuracies. Rosenbrock is the most accurate, and source splitting is more accurate than Strang splitting. Splitting errors concentrate in short-lived species sensitive to solar radiation and species with strong emissions and depositions
Learning optimization models in the presence of unknown relations
In a sequential auction with multiple bidding agents, it is highly
challenging to determine the ordering of the items to sell in order to maximize
the revenue due to the fact that the autonomy and private information of the
agents heavily influence the outcome of the auction.
The main contribution of this paper is two-fold. First, we demonstrate how to
apply machine learning techniques to solve the optimal ordering problem in
sequential auctions. We learn regression models from historical auctions, which
are subsequently used to predict the expected value of orderings for new
auctions. Given the learned models, we propose two types of optimization
methods: a black-box best-first search approach, and a novel white-box approach
that maps learned models to integer linear programs (ILP) which can then be
solved by any ILP-solver. Although the studied auction design problem is hard,
our proposed optimization methods obtain good orderings with high revenues.
Our second main contribution is the insight that the internal structure of
regression models can be efficiently evaluated inside an ILP solver for
optimization purposes. To this end, we provide efficient encodings of
regression trees and linear regression models as ILP constraints. This new way
of using learned models for optimization is promising. As the experimental
results show, it significantly outperforms the black-box best-first search in
nearly all settings.Comment: 37 pages. Working pape
Familiekudde - natuurlijk houderijsysteem voor melkvee
De Familiekudde is een innovatief concept dat bijdraagt aan een duurzame (biologische) melkveehouderij. Veehouders uit het praktijknetwerk ‘Familiekudde’ staan op het punt om dit totaal nieuwe houderijsysteem toe te passen op hun bedrijf. In de Familiekudde ligt de nadruk op een natuurlijke leefomgeving. Het concept werkt met stabiele kuddes, kalveren bij de koe en zonder onthoornen. Het dier krijgt de ruimte en mogelijkheid om haar natuurlijke gedrag te vertonen. Er wordt rekening gehouden met bedrijfseconomische randvoorwaarden, milieu, diergezondheid en bedrijfsmanagement. In dit bioKennisbericht een introductie van het Familiekuddeconcept, de consequenties en oplossingen voor mogelijke knelpunten
Leverbot in kaart gebracht
Dairy cows grazing outside, or fed indoors with fresh grass, are increasingly infected by liver fluke, a parasitic flatworm. Losses resulting from liver fluke disease are generally underestimated, but include growth retardation, reduced resistance, lower milk production, and rejection of infected livers at the slaughterhouse
- …
