9 research outputs found

    Spinal muscular atrophy type I associated with a novel SMN1 splicing variant that disrupts the expression of the functional transcript

    Get PDF
    IntroductionSpinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA.MethodsMLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis.ResultsThe novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed.DiscussionWe verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations

    Folk Musicians in the Position of Teacher: The Case of a Santouri Player and Teacher in Greece

    Get PDF
    As a topic, folk music inclusion in the European school system dates to the 19th century. It has continued throughout the 20th century with the inclusion of other “nonclassical” genres such as popular and world music. In Greece, the inclusion of traditional instruments in the curriculum of public Music Secondary Schools occurred in 1988. This happened for the first time officially in a state educational institute. This fact led researchers to investigate how folk musicians of the past learned and transmitted their art. This article explores the teaching methods used by a 70-year-old santouri (Greek hammered dulcimer) player on a Greek island in the North Aegean Sea. Although the musician mentioned above had learned his art through the traditional oral method of apprenticeship, he held a teaching position in an educational institute of formal music education, a very different context from the one he learned. The authors aim to investigate how the context of an organized music lesson may affect how a folk musician of the past generation tries to transmit his art to youngsters by teaching. Furthermore, the record of his teaching methods can be useful to younger teachers of Greek traditional instruments, but it can also contribute to the broader discussion of informal music learning

    Greek Sage Exhibits Neuroprotective Activity against Amyloid Beta-Induced Toxicity

    No full text
    Alzheimer’s disease (AD) is the most common neurodegenerative disease, affecting the elderly at a high incidence. AD is of unknown etiology and currently, no cure is available. Present medication is restricted to treating symptoms; thus, a need exists for the development of effective remedies. Medicinal plants constitute a large pool, from which active compounds of great pharmaceutical potential can be derived. Various Salvia spp. are considered as neuroprotective, and here, the ability of Salvia fruticosa (SF) to protect against toxic effects induced in an AD cell model was partly assessed. Two of AD’s characteristic hallmarks are the presence of elevated oxidative stress levels and the cytotoxic aggregation of amyloid beta (Aβ) peptides. Thus, we obtained SF extracts in three different solvents of increasing polarity, consecutively, to evaluate (a) their antioxidant capacity with the employment of the free radical scavenging assay (DPPH•), of the ferric reducing ability of plasma assay (FRAP), and of the cellular reactive oxygen species assay (DCFDA) and (b) their neuroprotective properties against Aβ25–35-induced cell death with the use of an MTT assay. All three SF extracts showed a considerable antioxidant capacity, with the methanol (SFM) extract being the strongest. The results of the total phenolic and flavonoid contents (TPC and TFC) of the extracts and of the FRAP and the DCFDA assays showed a similar pattern. In addition, and most importantly, the dichloromethane (SFD) and the petroleum ether (SFP) extracts had an effect on Aβ toxicity, exhibiting a significant neuroprotective potential. To our knowledge, this is the first report of SF extracts demonstrating neuroprotective potential against Aβ toxicity. In combination with their antioxidant capacity, SF extracts may be beneficial in combating AD and other neurodegenerative diseases

    Chemical Profiling and Antioxidant and Anti-Amyloid Capacities of <i>Salvia fruticosa</i> Extracts from Greece

    No full text
    An increasingly common ailment in elderly persons is Alzheimer’s disease (AD), a neurodegenerative illness. Present treatment is restricted to alleviating symptoms; hence, there is a requirement to develop an effective approach to AD treatment. Salvia fruticosa (SF) is a medicinal plant with a documented neuroprotective potential. To identify extracts of increased neuroprotectivity, we partitioned the methanolic extract of SF aerial parts from Greece into several fractions, by employing solvents of different polarities. The fractions were chemically identified and evaluated for their antioxidancy and anti-neurotoxic potential against amyloid beta peptides 25–35 (Aβ25–35). Carnosol and carnosic acid were among the prominent compounds, while all partitions showed significant antioxidant capacity, with the diethyl ether and ethyl acetate partitions being the most potent. These, along with the aqueous and the butanolic fractions, demonstrated statistically significant anti-neurotoxic potential. Thus, our findings further validate the neuroprotective potential of SF and support its ethnopharmacological usage as an antioxidant. The particular properties found define SF as a promising source for obtaining extracts or bioactive compounds, possibly beneficial for generating AD-related functional foods or medications. Finally, our results encourage plant extract partitioning for acquiring fractions of enhanced biological properties

    Table_1_Spinal muscular atrophy type I associated with a novel SMN1 splicing variant that disrupts the expression of the functional transcript.DOCX

    No full text
    IntroductionSpinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder caused by pathogenic variants in the SMN1 gene. The majority of SMA patients harbor a homozygous deletion of SMN1 exon 7 (95%). Heterozygosity for a conventional variant and a deletion is rare (5%) and not easily detected, due to the highly homologous SMN2 gene interference. SMN2 mainly produces a truncated non-functional protein (SMN-d7) instead of the full-length functional (SMN-FL). We hereby report a novel SMN1 splicing variant in an infant with severe SMA.MethodsMLPA was used for SMN1/2 exon dosage determination. Sanger sequencing approaches and long-range PCR were employed to search for an SMN1 variant. Conventional and improved Real-time PCR assays were developed for the qualitative and quantitative SMN1/2 RNA analysis.ResultsThe novel SMN1 splice-site variant c.835-8_835-5delinsG, was identified in compound heterozygosity with SMN1 exons 7/8 deletion. RNA studies revealed complete absence of SMN1 exon 7, thus confirming a disruptive effect of the variant on SMN1 splicing. No expression of the functional SMN1-FL transcript, remarkable expression of the SMN1-d7 and increased levels of the SMN2-FL/SMN2-d7 transcripts were observed.DiscussionWe verified the occurrence of a non-deletion SMN1 variant and supported its pathogenicity, thus expanding the SMN1 variants spectrum. We discuss the updated SMA genetic findings in the Cypriot population, highlighting an increased percentage of intragenic variants compared to other populations.</p
    corecore