8 research outputs found

    25th RCOphth Congress, President's Session paper:25 years of progress in medical retina

    Get PDF
    The quarter century since the foundation of the Royal College of Ophthalmologists has coincided with immense change in the subspecialty of medical retina, which has moved from being the province of a few dedicated enthusiasts to being an integral, core part of ophthalmology in every eye department. In age-related macular degeneration, there has been a move away from targeted, destructive laser therapy, dependent on fluorescein angiography to intravitreal injection therapy of anti-growth factor agents, largely guided by optical coherence tomography. As a result of these changes, ophthalmologists have witnessed a marked improvement in visual outcomes for their patients with wet age-related macular degeneration (AMD), while at the same time developing and enacting entirely novel ways of delivering care. In the field of diabetic retinopathy, this period also saw advances in laser technology and a move away from highly destructive laser photocoagulation treatment to gentler retinal laser treatments. The introduction of intravitreal therapies, both steroids and anti-growth factor agents, has further advanced the treatment of diabetic macular oedema. This era has also seen in the United Kingdom the introduction of a coordinated national diabetic retinopathy screening programme, which offers an increasing hope that the burden of blindness from diabetic eye disease can be lessened. Exciting future advances in retinal imaging, genetics, and pharmacology will allow us to further improve outcomes for our patients and for ophthalmologists specialising in medical retina, the future looks very exciting but increasingly busy

    Die Bedeutung der PDT für vaskuläre Erkrankungen der Netzhaut

    No full text

    Combination Therapy with Ocular Photodynamic Therapy for Age-Related Macular Degeneration

    No full text

    Genetic predictors of response to photodynamic therapy

    No full text
    In Western countries, therapeutic management of patients affected by choroidal neovascularization (CNV) secondary to different typologies of macular degeneration represents a major health care problem. Age-related macular degeneration is the disease most frequently associated with CNV development. Schematically, CNVs can be distinguished into classic and occult subtypes, which are characterized by variable natural history and different responsiveness to some therapeutic procedures. At present, the dramatic vision loss due to CNV can be mainly treated by two interventional strategies, which are utilizable in either single or combined modalities: photodynamic therapy with verteporfin (PDT-V), and intravitreal administration of drugs acting against vascular endothelial growth factor. The combined use of PDT-V and anti-angiogenic drugs represents one of the most promising strategies against neovascular macular degeneration, but it unavoidably results in an expensive increase in health resource utilization. However, the positive data from several studies serve as a basis for reconsidering the role of PDT-V, which has undergone a renaissance prompted by the need for a more rational therapeutic approach toward CNV. New pharmacogenetic knowledge of PDT-V points to exploratory prospects to optimize the clinical application of this intriguing photothrombotic procedure. In fact, a Medline search provides data regarding the role of several single nucleotide polymorphisms (SNPs) as genetic predictors of CNV responsiveness to PDT-V. Specifically, correlations between SNPs and different levels of PDT-V efficacy have been detected by examining the gene variants influencing (i) thrombo-coagulative pathways, i.e. methylenetetrahydrofolate reductase (MTHFR) 677C>T (rs1801133), factor V (F5) 1691G>A (rs6025), prothrombin (F2) 20210G>A (rs1799963), and factor XIII-A (F13A1) 185G>T (rs5985); (ii) complement activation and/or inflammatory processes, i.e. complement factor H (CFH) 1277T>C (rs1061170), high-temperature requirement factor A1 (HTRA1) promoter -512G>A (rs11200638), and two variants of the C-reactive protein (CRP) gene (rs2808635 and rs876538); and (iii) production and bioavailability of vascular endothelial growth factor (VEGFA -2578C>A [rs699947] and rs2146323). This article critically evaluates both the clinical plausibility and the opportunity to utilize the most important SNP-response interactions of PDT-V for an effective upgrade of the current anti-CNV therapeutic scenario. In addition, the pharmacogenetics of a very severe post-PDT-V adverse event, i.e. a decrease in acute vision, is briefly discussed. A comprehensive appraisal of the findings reviewed in this article should be carefully considered to design future trials aimed at verifying (after proper genotypic stratification of the enrolled patients) whether these innovative pharmacogenetic approaches will be able to improve the multifaceted interventional management of neovascular macular degeneration

    Genetic Predictors of Response to Photodynamic Therapy

    No full text

    New Developments in Liposomal Drug Delivery

    No full text
    corecore