68 research outputs found

    The role of phosphatidylinositide-3-kinase in basal mitogen-activated protein kinase activity and cell survival

    Get PDF
    AbstractPhosphatidylinositide-3-OH-kinase (PI 3-kinase) is an upstream activator of p42/p44 mitogen-activated protein kinase (MAPK), but the role of PI 3-kinase-dependent MAPK remains obscure. Here we demonstrate that in a variety of different cell types, PI 3-kinase inhibition results in an inhibition of MAPK in unstimulated cells but does not interfere with growth factor-, or TPA-induced MAPK activity. Furthermore, inhibition of either PI 3-kinase or MEK/MAPK results in cell death in serum-starved cells. We concluded that basal, but not induced MAPK activity is mediated by PI 3-kinase and that this PI 3-kinase-mediated MEK/MAPK activity is essential for cell survival in quiescent cells

    De-palmitoylation of tissue factor regulates its activity, phosphorylation and cellular functions

    Get PDF
    In this study, the role of de-palmitoylation of tissue factor (TF) in the decryption of its activity was explored. TF-tGFP constructs were prepared by mutagenesis-substitution at Cys245 to prevent or mimic palmitolyation. Additionally, to reduce TF de-palmitoylation, the expression of palmitoyl-protein thioesterases (PPT) was suppressed. Other TF mutants were prepared with altered flexibility, hydrophobicity or length of the transmembrane domain. The outcome of these alterations on fXa-generation, fVIIa binding, Ser253 phosphorylation and TF-microvesicle release were assessed in endothelial cells, and the influence on endothelial and MCF-7 cell proliferation and apoptosis was analysed. Preventing TF palmitoylation (TFSer245-tGFP), increasing the hydropho-bicity (TFPhe241-tGFP) or lengthening (TFLongTM-tGFP) of the transmembrane domain enhanced fXa-generation in resting cells compared to cells expressing TFWt-tGFP, but fXa-generation was not further increased following PAR2 activation. Extending the available length of the transmembrane domain enhanced the TF-tGFP release within microvesicles and Ser253 phosphorylation and increased cell proliferation. Moreover, prevention of PKCα-mediated Ser253 phosphorylation with Gö6976 did not preclude fXa-generation. Conversely, reducing the hydrophobicity (TFSer242-tGFP), shortening (TFShortTM-tGFP) or reducing the flexibility (TFVal225-tGFP) of the transmembrane domain suppressed fXa-generation, fVIIa-HRP binding and Ser253 phosphorylation following PAR2 activa-tion. PPT knock-down or mimicking palmitoylation (TFPhe245-tGFP) reduced fXa-generation without affecting fVIIa binding. This study has for the first time shown that TF procoagulant activity is regulated through de-palmitoylation, which alters the orientation of its transmembrane domain and is independent of TF phosphorylation. However, Ser253 phosphorylation is facilitated by changes in the orientation of the transmembrane domain and can induce TF-cellular signalling that influences cellular proliferation/apoptosis

    Lowering Low-Density Lipoprotein Particles in Plasma Using Dextran Sulphate Co-Precipitates Procoagulant Extracellular Vesicles

    Get PDF
    Plasma extracellular vesicles (EVs) are lipid membrane vesicles involved in several biological processes including coagulation. Both coagulation and lipid metabolism are strongly associated with cardiovascular events. Lowering very-low- and low-density lipoprotein ((V)LDL) particles via dextran sulphate LDL apheresis also removes coagulation proteins. It remains unknown, however, how coagulation proteins are removed in apheresis. We hypothesize that plasma EVs that contain high levels of coagulation proteins are concomitantly removed with (V)LDL particles by dextran sulphate apheresis. For this, we precipitated (V)LDL particles from human plasma with dextran sulphate and analyzed the abundance of coagulation proteins and EVs in the precipitate. Coagulation pathway proteins, as demonstrated by proteomics and a bead-based immunoassay, were over-represented in the (V)LDL precipitate. In this precipitate, both bilayer EVs and monolayer (V)LDL particles were observed by electron microscopy. Separation of EVs from (V)LDL particles using density gradient centrifugation revealed that almost all coagulation proteins were present in the EVs and not in the (V)LDL particles. These EVs also showed a strong procoagulant activity. Our study suggests that dextran sulphate used in LDL apheresis may remove procoagulant EVs concomitantly with (V)LDL particles, leading to a loss of coagulation proteins from the blood

    The interplay between tamoxifen and endoxifen plasma concentrations and coagulation parameters in patients with primary breast cancer

    Get PDF
    Background: Tamoxifen is an effective treatment for primary breast cancer but increases the risk for venous thromboembolism. Tamoxifen decreases anticoagulant proteins, including antithrombin (AT), protein C (PC) and tissue factor (TF) pathway inhibitor, and enhances thrombin generation (TG). However, the relation between plasma concentrations of both tamoxifen and its active metabolite endoxifen and coagulation remains unknown. Methods: Tamoxifen and endoxifen were measured in 141 patients from the prospective open-label intervention TOTAM-study after 3 months (m) and 6 m of tamoxifen treatment. Levels of AT and PC, the procoagulant TF, and TG parameters were determined at both timepoints if samples were available (n = 53–135 per analysis). Levels of coagulation proteins and TG parameters were correlated and compared between: 1) quartiles of tamoxifen and endoxifen levels, and 2) 3 m and 6 m of treatment. Results: At 3 m, levels of AT, PC, TF and TG parameters were not associated with tamoxifen nor endoxifen levels. At 6 m, median TF levels were lower in patients in the 3rd (56.6 [33] pg/mL), and 4th (50.1 [19] pg/mL) endoxifen quartiles compared to the 1st (lowest) quartile (76 [69] pg/mL) (P=0.027 and P=0.018, respectively), but no differences in anticoagulant proteins or TG parameters were observed. An increase in circulating TF levels (3 m: 46.0 [15] versus 6 m: 54.4 [39] pg/mL, P &lt; 0.001) and TG parameters was observed at the 6 m treatment timepoint, while AT and PC levels remained stable.Conclusions: Our results indicate that higher tamoxifen and endoxifen levels are not correlated with an increased procoagulant state, suggesting tamoxifen dose escalation does not further promote hypercoagulability.</p

    Proliferation

    Full text link

    Tissue factor signal transduction in angiogenesis

    No full text
    Tissue factor (TF), a 47-kDa transmembrane glycoprotein, is a principal regulator of oncogenic neoangiogenesis and controls therefore the cancerous process. Although originally identified as a component of the coagulation cascade, it has become clear that TF functions as a cytokine-like receptor and this notion was confirmed by the discovery of coagulation-independent actions of TF (which include regulation of tumour growth, embryonic and oncogenic blood vessel formation as well as regulation of inflammation and sepsis). In accordance, TF-mediated signal transduction events are readily detected and the elucidation of the underlying molecular mechanisms has recently seen spectacular progress and it is now understood that the role of TF in angiogenesis is both coagulation-dependent and independent. The recent evidence for this emerging insight will be the subject of this revie

    NEW FUNDAMENTALS IN HEMOSTASIS

    No full text
    Hemostasis encompasses the tightly regulated processes of blood clotting, platelet activation, and vascular repair. After wounding, the hemostatic system engages a plethora of vascular and extravascular receptors that act in concert with blood components to seal off the damage inflicted to the vasculature and the surrounding tissue. The first important component that contributes to hemostasis is the coagulation system, while the second important component starts with platelet activation, which not only contributes to the hemostatic plug, but also accelerates the coagulation system. Eventually, coagulation and platelet activation are switched off by blood-borne inhibitors and proteolytic feedback loops. This review summarizes new concepts of activation of proteases that regulate coagulation and anticoagulation, to give rise to transient thrombin generation and fibrin clot formation. It further speculates on the (patho)physiological roles of intra- and extravascular receptors that operate in response to these proteases. Furthermore, this review provides a new framework for understanding how signaling and adhesive interactions between endothelial cells, leukocytes, and platelets can regulate thrombus formation and modulate the coagulation process. Now that the key molecular players of coagulation and platelet activation have become clear, and their complex interactions with the vessel wall have been mapped out, we can also better speculate on the causes of thrombosis-related angiopathie
    corecore