150 research outputs found

    Role of the Channel Geometry on the Bubble Pinch-Off in Flow-Focusing Devices

    Get PDF
    The formation of bubbles by flow focusing of a gas and a liquid in a rectangular channel is shown to depend strongly on the channel aspect ratio. Bubble breakup consists in a slow linear 2D collapse of the gas thread, ending in a fast 3D pinch-off. The 2D collapse is predicted to be stable against perturbations of the gas-liquid interface, whereas the 3D pinch-off is unstable, causing bubble polydispersity. During 3D pinch-off, a scaling wm~tau1/3 between the neck width wm and the time tau before breakup indicates that breakup is driven by the inertia of both gas and liquid, not by capillarity

    Attitudes of healthcare professionals and drug regulators about progression-free survival as endpoint in the advanced cancer setting

    Get PDF
    Purpose: To describe the attitudes of healthcare professionals and drug regulators about progression-free survival (PFS) as efficacy endpoint in clinical trials with patients with advanced cancer and to explore to what extent these attitudes influence the willingness to trade between PFS and toxicity. Methods: Cross-sectional survey with regulators from the European Medicines Agency (EMA), and healthcare professionals (HCP) from the “Stichting Hemato-Oncologie voor Volwassenen Nederland” (HOVON) collaborative group and the European Organisation for Research and Treatment of Cancer (EORTC). Attitudes towards PFS were elicited using 5-point Likert items. The respondents’ willingness to trade between PFS and grade 3 or 4 (G34) toxicity was assessed using the threshold technique and quantified in terms of their maximum acceptable risk (MAR). Results: Responses were collected from 287 HCPs and 64 regulators with mainly clinical expertise. Attitudes towards PFS were often spread out in both groups and related to beliefs about PFS being a likely surrogate for clinical benefit, being an intrinsic benefit to be distinguished from OS, or on the importance given to OS. Being a regulator or holding stronger beliefs about PFS being a likely surrogate or an intrinsic benefit were associated with a higher MAR. Presence of a supportive trend in OS was stated as important but was not associated with MAR. There was agreement on the need to address bias in the adjudication of PFS and the need for improving communication to patients about meaning, strengths, and limitations of improvements in PFS. Conclusion: Attitudes towards PFS were spread out and were associated with individual differences in the willingness to trade between toxicity and PFS. There was agreement on the need to address bias in the adjudication of PFS and improving communication to patients.</p

    A new perspective on fungal metabolites:Identification of bioactive compounds from fungi using zebrafish embryogenesis as read-out

    Get PDF
    There is a constant need for new therapeutic compounds. Fungi have proven to be an excellent, but underexplored source for biologically active compounds with therapeutic potential. Here, we combine mycology, embryology and chemistry by testing secondary metabolites from more than 10,000 species of fungi for biological activity using developing zebrafish (Danio rerio) embryos. Zebrafish development is an excellent model for high-throughput screening. Development is rapid, multiple cell types are assessed simultaneously and embryos are available in high numbers. We found that 1,526 fungal strains produced secondary metabolites with biological activity in the zebrafish bioassay. The active compounds from 39 selected fungi were purified by liquid-liquid extraction and preparative HPLC. 34 compounds were identified by a combination of chemical analyses, including LCMS, UV-Vis spectroscopy/ spectrophotometry, high resolution mass spectrometry and NMR. Our results demonstrate that fungi express a wide variety of biologically active compounds, consisting of both known therapeutic compounds as well as relatively unexplored compounds. Understanding their biological activity in zebrafish may provide insight into underlying biological processes as well as mode of action. Together, this information may provide the first step towards lead compound development for therapeutic drug development

    Accelerated hot-carrier cooling in MAPbI3 perovskite by pressure-induced lattice compression

    Get PDF
    Hot-carrier cooling (HCC) in metal halide perovskites in the high-density regime is significantly slower compared to conventional semiconductors. This effect is commonly attributed to a hot-phonon bottleneck but the influence of the lattice properties on the HCC behaviour is poorly understood. Using pressure-dependent transient absorption spectroscopy (fs-TAS) we find that at an excitation density below Mott transition, pressure does not affect the HCC. On the contrary, above Mott transition, HCC in methylammonium lead iodide (MAPbI3) is around two times as fast at 0.3 GPa compared to ambient pressure. Our electron-phonon coupling calculations reveal about two times stronger electron-phonon coupling for the inorganic cage mode at 0.3 GPa. However, our experiments reveal that pressure promotes faster HCC only above Mott transition. Altogether, these findings suggest a change in the nature of excited carriers in the high-density regime, providing insights on the electronic behavior of devices operating at such high charge-carrier density

    Biofilm removal from a simulated isthmus and lateral canal during syringe irrigation at various flow rates:a combined experimental and Computational Fluid Dynamics approach

    Get PDF
    Aim (i) To quantify biofilm removal from a simulated isthmus and a lateral canal in an artificial root canal system during syringe irrigation with NaOCl at different concentrations and delivered at various flow rates (ii) to examine whether biofilm removal is further improved by a final high-flow-rate rinse with an inert irrigant following irrigation with NaOCl. (iii) to simulate the irrigant flow in these areas using a computer model (iv) to examine whether the irrigant velocity calculated by the computer model is correlated to biofilm removal. Methodology Ninety-six artificial root canals with either a simulated isthmus or lateral canal were used. A dual-species in vitro biofilm was formed in these areas using a Constant Depth Film Fermenter. NaOCl at various concentrations (2, 5 and 10%) or adhesion buffer (control) was delivered for 30 s by a syringe and an open-ended needle at 0.033, 0.083, or 0.166 mL s(-1) or passively deposited in the main root canal (phase 1). All specimens were subsequently rinsed for 30 s with adhesion buffer at 0.166 mL s(-1) (phase 2). The biofilm was scanned by Optical Coherence Tomography to determine the percentage of the remaining biofilm. Results were analysed by two 3-way mixed-design ANOVAs (alpha = 0.05). A Computational Fluid Dynamics model was used to simulate the irrigant flow inside the artificial root canal system. Results The flow rate during phase 1 and additional irrigation during phase 2 had a significant effect on the percentage of the remaining biofilm in the isthmus (P = 0.004 and P <0.001). Additional irrigation during phase 2 also affected the remaining biofilm in the lateral canal significantly (P 0.05). Irrigant velocity in the isthmus and lateral canal increased with increasing flow rate and it was substantially correlated to biofilm removal from those areas. Conclusions The irrigant flow rate affected biofilm removal in vitro more than NaOCl concentration. Irrigant velocity predicted by the computer model corresponded with the pattern of biofilm removal from the simulated isthmus and lateral canal

    Lattice compression increases the activation barrier for phase segregation in mixed-halide perovskites

    Get PDF
    The bandgap tunability of mixed-halide perovskites makes them promising candidates for light emitting diodes and tandem solar cells. However, illuminating mixed-halide perovskites results in the formation of segregated phases enriched in a single-halide. This segregation occurs through ion migration, which is also observed in single-halide compositions, and whose control is thus essential to enhance the lifetime and stability. Using pressure-dependent transient absorption spectroscopy, we find that the formation rates of both iodide- and bromide-rich phases in MAPb(BrxI1-x)3 reduce by two orders of magnitude on increasing the pressure to 0.3 GPa. We explain this reduction from a compression-induced increase of the activation energy for halide migration, which is supported by first-principle calculations. A similar mechanism occurs when the unit cell volume is reduced by incorporating a smaller cation. These findings reveal that stability with respect to halide segregation can be achieved either physically through compressive stress or chemically through compositional engineering

    Comorbidities in transplant recipients with acute myeloid leukemia receiving low-intensity conditioning regimens: an ALWP EBMT study

    Get PDF
    Older age and a high burden of comorbidities often drive the selection of low-intensity conditioning regimens in allogeneic hematopoietic stem cell transplantation recipients. However, the impact of comorbidities in the low-intensity conditioning setting is unclear. We sought to determine the contribution of individual comorbidities and their cumulative burden on the risk of nonrelapse mortality (NRM) among patients receiving low-intensity regimens. In a retrospective analysis of adults (≥18 years) who underwent transplantation for acute myeloid leukemia in the first complete remission between 2008 and 2018, we studied recipients of low-intensity regimens as defined by the transplantation conditioning intensity (TCI) scale. Multivariable Cox models were constructed to study associations of comorbidities with NRM. Comorbidities identified as putative risk factors in the low-TCI setting were included in combined multivariable regression models assessed for overall survival, NRM, and relapse. A total of 1663 patients with a median age of 61 years received low-TCI regimens. Cardiac comorbidity (including arrhythmia/valvular disease) and psychiatric disease were associated with increased NRM risk (hazard ratio [HR], 1.54; 95% confidence interval [CI], 1.13-2.09 and HR, 1.69; 95% CI, 1.02-2.82, respectively). Moderate pulmonary dysfunction, though prevalent, was not associated with increased NRM. In a combined model, cardiac, psychiatric, renal, and inflammatory bowel diseases were independently associated with adverse transplantation outcomes. These findings may inform patient and regimen selection and reinforce the need for further investigation of cardioprotective transplantation approaches.</p
    • …
    corecore