4 research outputs found

    Exploring the drivers of variation in trophic mismatches:A systematic review of long-term avian studies

    Get PDF
    Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output. Here, we explore the potential causes for variation in the strength of trophic mismatches in published studies of birds. Specifically, we ask whether the changes in the degree of mismatch that have occurred over time can be explained by a bird's (a) breeding latitude, (b) migration distance, and/or (c) life-history traits. We found that none of these three factors explain changes in the degree of mismatch over time. Nevertheless, food phenology did advance faster at more northerly latitudes, while shifts in bird phenology did not show a trend with latitude. We argue that the lack of support in our results is attributable to the large variation in the metrics used to describe timing of food availability. We propose a pathway to improve the quantification of trophic mismatches, guided by a more rigorous understanding of links between consumers and their resources

    Exploring the drivers of variation in trophic mismatches:A systematic review of long-term avian studies

    Get PDF
    Many organisms reproduce in seasonal environments, where selection on timing of reproduction is particularly strong as consumers need to synchronize reproduction with the peaked occurrence of their food. When a consumer species changes its phenology at a slower rate than its resources, this may induce a trophic mismatch, that is, offspring growing up after the peak in food availability, potentially leading to reductions in growth and survival. However, there is large variation in the degree of trophic mismatches as well as in its effects on reproductive output. Here, we explore the potential causes for variation in the strength of trophic mismatches in published studies of birds. Specifically, we ask whether the changes in the degree of mismatch that have occurred over time can be explained by a bird's (a) breeding latitude, (b) migration distance, and/or (c) life-history traits. We found that none of these three factors explain changes in the degree of mismatch over time. Nevertheless, food phenology did advance faster at more northerly latitudes, while shifts in bird phenology did not show a trend with latitude. We argue that the lack of support in our results is attributable to the large variation in the metrics used to describe timing of food availability. We propose a pathway to improve the quantification of trophic mismatches, guided by a more rigorous understanding of links between consumers and their resources.</p

    Site-specific length-biomass relationships of arctic arthropod families are critical for accurate ecological inferences

    Get PDF
    Arthropods play a crucial role in terrestrial ecosystems, for instance in mediating energy fluxes and in forming the food base for many organisms. To better understand their functional role in such ecosystem processes, monitoring of trends in arthropod biomass is essential. Obtaining direct measurements of the body mass of individual specimens is laborious. Therefore, these data are often indirectly acquired by utilizing allometric length-biomass relationships based on a correlative parameter, such as body length. Previous studies have often used such relationships with a low taxonomic resolution and/or small sample size and/or adopted regressions calibrated in different biomes. Despite the scientific interest in the ecology of arctic arthropods, no site-specific family-level length-biomass relationships have hitherto been published. Here we present 27 family-specific length-biomass relationships from two sites in the High Arctic: Zackenberg in northeast Greenland and Knipovich in north Taimyr, Russia. We show that length-biomass regressions from different sites within the same biome did not affect estimates of phenology but did result in substantially different estimates of arthropod biomass. Estimates of daily biomass at Zackenberg were on average 24% higher when calculated using regressions for Knipovich compared to using regressions for Zackenberg. In addition, calculations of daily arthropod biomass at Zackenberg based on order-level regressions from frequently cited studies in literature revealed overestimations of arthropod biomass ranging from 69.7% to 130% compared to estimates based on regressions for Zackenberg. Our results illustrate that the use of allometric relationships from different sites can significantly alter the biological interpretation of, for instance, the interaction between insectivorous birds and their arthropod prey. We conclude that length-biomass relationships should be locally established rather than being based on global relationships.</p

    Different currencies for calculating resource phenology result in opposite inferences about trophic mismatches

    Get PDF
    Shifts in phenology are among the key responses of organisms to climate change. When rates of phenological change differ between interacting species they may result in phenological asynchrony. Studies have found conflicting patterns concerning the direction and magnitude of changes in synchrony, which have been attributed to biological factors. A hitherto overlooked additional explanation are differences in the currency used to quantify resource phenology, such as abundance and biomass. Studying an insectivorous bird (the sanderling) and its prey, we show that the median date of cumulative arthropod biomass occurred, on average, 6.9 days after the median date of cumulative arthropod abundance. In some years this difference could be as large as 21 days. For 23 years, hatch dates of sanderlings became less synchronized with the median date of arthropod abundance, but more synchronized with the median date of arthropod biomass. The currency-specific trends can be explained by our finding that mean biomass per arthropod specimen increased with date. Using a conceptual simulation, we show that estimated rates of phenological change for abundance and biomass can differ depending on temporal shifts in the size distribution of resources. We conclude that studies of trophic mismatch based on different currencies for resource phenology can be incompatible with each other.</p
    corecore