134 research outputs found

    Control of glycolytic dynamics by hexose transport in Saccharomyces cerevisiae

    Get PDF
    AbstractIt is becoming accepted that steady-state fluxes are not necessarily controlled by single rate-limiting steps. This leaves open the issue whether cellular dynamics are controlled by single pacemaker enzymes, as has often been proposed. This paper shows that yeast sugar transport has substantial but not complete control of the frequency of glycolytic oscillations. Addition of maltose, a competitive inhibitor of glucose transport, reduced both average glucose consumption flux and frequency of glycolytic oscillations. Assuming a single kinetic component and a symmetrical carrier, a frequency control coefficient of between 0.4 and 0.6 and an average-flux control coefficient of between 0.6 and 0.9 were calculated for hexose transport activity. In a second approach, mannose was used as the carbon and free-energy source, and the dependencies on the extracellular mannose concentration of the transport activity, of the frequency of oscillations, and of the average flux were compared. In this case the frequency control coefficient and the average-flux control coefficient of hexose transport activity amounted to 0.7 and 0.9, respectively. From these results, we conclude that 1) transport is highly important for the dynamics of glycolysis, 2) most but not all control resides in glucose transport, and 3) there should at least be one step other than transport with substantial control

    Hillslope Hydrology in Global Change Research and Earth System Modeling

    Get PDF
    Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope-scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid-level water, energy, and biogeochemical fluxes. In contrast to the one-dimensional (1-D), 2- to 3-m deep, and free-draining soil hydrology in most ESM land models, we hypothesize that 3-D, lateral ridge-to-valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions. Plain Language Summary Hillslopes are key landscape features that organize water availability on land. Valley bottoms are wetter than hilltops, and sun-facing slopes are warmer and drier than shaded ones. This hydrologic organization leads to systematic differences in soil and vegetation between valleys and hilltops, and between sunny and shady slopes. Although these patterns are fundamental to understanding the structures and functions of water and terrestrial ecosystems, they are too fine grained to be represented in global-scale Earth System Models. Here we bring together Critical Zone scientists who study the interplay of vegetation, the porous upper layer of the continental crust from vegetation to bedrock, and moisture dynamics deep into the weathered bedrock underlying hillslopes and Earth System Model scientists who develop global models, to ask: Do hillslope-scale processes matter to predicting global change? The answers will help scientists understand where and why hillslopes matter, and to better predict how terrestrial ecosystems, including societies, may affect and be affected by our rapidly changing planet.National Science Foundation [NSF-EAR-1528298, NSF-EAR-0753521]6 month embargo; published online: 27 February 2019This item from the UA Faculty Publications collection is made available by the University of Arizona with support from the University of Arizona Libraries. If you have questions, please contact us at [email protected]

    Hillslope Hydrology in Global Change Research and Earth System Modeling

    Get PDF
    Earth System Models (ESMs) are essential tools for understanding and predicting global change, but they cannot explicitly resolve hillslope‐scale terrain structures that fundamentally organize water, energy, and biogeochemical stores and fluxes at subgrid scales. Here we bring together hydrologists, Critical Zone scientists, and ESM developers, to explore how hillslope structures may modulate ESM grid‐level water, energy, and biogeochemical fluxes. In contrast to the one‐dimensional (1‐D), 2‐ to 3‐mdeep, and free‐draining soil hydrology in most ESM land models, we hypothesize that 3‐D, lateral ridge‐to‐valley flow through shallow and deep paths and insolation contrasts between sunny and shady slopes are the top two globally quantifiable organizers of water and energy (and vegetation) within an ESM grid cell. We hypothesize that these two processes are likely to impact ESM predictions where (and when) water and/or energy are limiting. We further hypothesize that, if implemented in ESM land models, these processes will increase simulated continental water storage and residence time, buffering terrestrial ecosystems against seasonal and interannual droughts. We explore efficient ways to capture these mechanisms in ESMs and identify critical knowledge gaps preventing us from scaling up hillslope to global processes. One such gap is our extremely limited knowledge of the subsurface, where water is stored (supporting vegetation) and released to stream baseflow (supporting aquatic ecosystems). We conclude with a set of organizing hypotheses and a call for global syntheses activities and model experiments to assess the impact of hillslope hydrology on global change predictions

    Precipitation control over inorganic nitrogen import-export budgets across watersheds: a synthesis of long-term ecological research

    Get PDF
    ABSTRACT We investigated long-term and seasonal patterns of N imports and exports, as well as patterns following climate perturbations, across biomes using data from 15 watersheds from nine Long-Term Ecological Research (LTER) sites in North America. Mean dissolved inorganic nitrogen (DIN) import-export budgets (N import via precipitation-N export via stream flow) for common years across all watersheds was highly variable, ranging from a net loss of 0Ð17 ƥ 0Ð09 kg N ha 1 mo 1 to net retention of 0Ð68 ƥ 0Ð08 kg N ha 1 mo 1 . The net retention of DIN decreased (smaller import-export budget) with increasing precipitation, as well as with increasing variation in precipitation during the winter, spring, and fall. Averaged across all seasons, net DIN retention decreased as the coefficient of variation (CV) in precipitation increased across all sites (r 2 D 0Ð48, p D 0Ð005). This trend was made stronger when the disturbed watersheds were withheld from the analysis (r 2 D 0Ð80, p < 0Ð001, n D 11). Thus, DIN exports were either similar to or exceeded imports in the tropical, boreal, and wet coniferous watersheds, whereas imports exceeded exports in temperate deciduous watersheds. In general, forest harvesting, hurricanes, or floods corresponded with periods of increased DIN exports relative to imports. Periods when water throughput within a watershed was likely to be lower (i.e. low snow pack or El Niño years) corresponded with decreased DIN exports relative to imports. These data provide a basis for ranking diverse sites in terms of their ability to retain DIN in the context of changing precipitation regimes likely to occur in the future

    Microbial Maintenance: A Critical Review on Its Quantification

    Get PDF
    Microbial maintenance is an important concept in microbiology. Its quantification, however, is a subject of continuous debate, which seems to be caused by (1) its definition, which includes nongrowth components other than maintenance; (2) the existence of partly overlapping concepts; (3) the evolution of variables as constants; and (4) the neglect of cell death in microbial dynamics. The two historically most important parameters describing maintenance, the specific maintenance rate and the maintenance coefficient, are based on partly different nongrowth components. There is thus no constant relation between these parameters and previous equations on this subject are wrong. In addition, the partial overlap between these parameters does not allow the use of a simple combination of these parameters. This also applies for combinations of a threshold concentration with one of the other estimates of maintenance. Maintenance estimates should ideally explicitly describe each nongrowth component. A conceptual model is introduced that describes their relative importance and reconciles the various concepts and definitions. The sensitivity of maintenance on underlying components was analyzed and indicated that overall maintenance depends nonlinearly on relative death rates, relative growth rates, growth yield, and endogenous metabolism. This quantitative sensitivity analysis explains the felt need to develop growth-dependent adaptations of existing maintenance parameters, and indicates the importance of distinguishing the various nongrowth components. Future experiments should verify the sensitivity of maintenance components under cellular and environmental conditions

    Dissimilatory nitrate uptake in Paracoccus denitrificans via a Δ”H+-dependent system and a nitrate-nitrite antiport system

    No full text
    Respiration-driven proton translocation has been studied with the oxidant pulse method for cells of denitrifying Paracoccus denitrificans oxidizing H2 during reduction of O2, NO- 3, NO- 2 or N2O. A simplified scheme of anaerobic electron transport and associated proton translocation is shown that is consistent with the measured H+ oxidant ratios. Furthermore, the kinetics and energetics of NO- 3 uptake in whole cells of P. denitrificans were studied. For this purpose, we measured H2 consumption or N2O production after addition of NO- 3 to a cell suspension, which indirectly gave information about uptake (and reduction) of NO- 3. It was found that a lag phase in H2 consumption or N2O production appeared whenever the membrane potential was dissipated by addition of thiocyanate, carbonyl cyanide m-chlorophenylhydrazone or triphenyl-methylphosphonium bromide. However, these lag phases were not observed when NO- 2 was present at the moment of introduction of NO- 3. On the basis of these findings we conclude that there are two uptake systems for NO- 3. One system is dependent on the proton-motive force and is probably used for initiation of NO- 3 uptake. The other is an NO- 3 NO- 2 antiport and its function is to take over NO- 3 uptake from the first system
    • 

    corecore