4 research outputs found

    Neoadjuvant Immunotherapy in Locally Advanced Mismatch Repair-Deficient Colon Cancer.

    No full text
    Mismatch repair-deficient (dMMR) tumors can be found in 10 to 15% of patients with nonmetastatic colon cancer. In these patients, the efficacy of chemotherapy is limited. The use of neoadjuvant immunotherapy has shown promising results, but data from studies of this approach are limited. We conducted a phase 2 study in which patients with nonmetastatic, locally advanced, previously untreated dMMR colon cancer were treated with neoadjuvant nivolumab plus ipilimumab. The two primary end points were safety, defined by timely surgery (i.e., ≤2-week delay of planned surgery owing to treatment-related toxic events), and 3-year disease-free survival. Secondary end points included pathological response and results of genomic analyses. Of 115 enrolled patients, 113 (98%; 97.5% confidence interval [CI], 93 to 100) underwent timely surgery; 2 patients had surgery delayed by more than 2 weeks. Grade 3 or 4 immune-related adverse events occurred in 5 patients (4%), and none of the patients discontinued treatment because of adverse events. Among the 111 patients included in the efficacy analysis, a pathological response was observed in 109 (98%; 95% CI, 94 to 100), including 105 (95%) with a major pathological response (defined as ≤10% residual viable tumor) and 75 (68%) with a pathological complete response (0% residual viable tumor). With a median follow-up of 26 months (range, 9 to 65), no patients have had recurrence of disease. In patients with locally advanced dMMR colon cancer, neoadjuvant nivolumab plus ipilimumab had an acceptable safety profile and led to a pathological response in a high proportion of patients. (Funded by Bristol Myers Squibb; NICHE-2 ClinicalTrials.gov number, NCT03026140.)

    Neoadjuvant atezolizumab plus chemotherapy in gastric and gastroesophageal junction adenocarcinoma: the phase 2 PANDA trial.

    Get PDF
    Gastric and gastroesophageal junction (G/GEJ) cancers carry a poor prognosis, and despite recent advancements, most patients die of their disease. Although immune checkpoint blockade became part of the standard-of-care for patients with metastatic G/GEJ cancers, its efficacy and impact on the tumor microenvironment (TME) in early disease remain largely unknown. We hypothesized higher efficacy of neoadjuvant immunotherapy plus chemotherapy in patients with nonmetastatic G/GEJ cancer. In the phase 2 PANDA trial, patients with previously untreated resectable G/GEJ tumors (n = 21) received neoadjuvant treatment with one cycle of atezolizumab monotherapy followed by four cycles of atezolizumab plus docetaxel, oxaliplatin and capecitabine. Treatment was well tolerated. There were grade 3 immune-related adverse events in two of 20 patients (10%) but no grade 4 or 5 immune-related adverse events, and all patients underwent resection without treatment-related delays, meeting the primary endpoint of safety and feasibility. Tissue was obtained at multiple time points, allowing analysis of the effects of single-agent anti-programmed cell death ligand 1 (PD-L1) and the subsequent combination with chemotherapy on the TME. Twenty of 21 patients underwent surgery and were evaluable for secondary pathologic response and survival endpoints, and 19 were evaluable for exploratory translational analyses. A major pathologic response (≤10% residual viable tumor) was observed in 14 of 20 (70%, 95% confidence interval 46-88%) patients, including 9 (45%, 95% confidence interval 23-68%) pathologic complete responses. At a median follow-up of 47 months, 13 of 14 responders were alive and disease-free, and five of six nonresponders had died as a result of recurrence. Notably, baseline anti-programmed cell death protein 1 (PD-1) <sup>+</sup> CD8 <sup>+</sup> T cell infiltration was significantly higher in responders versus nonresponders, and comparison of TME alterations following anti-PD-L1 monotherapy versus the subsequent combination with chemotherapy showed an increased immune activation on single-agent PD-1/L1 axis blockade. On the basis of these data, monotherapy anti-PD-L1 before its combination with chemotherapy warrants further exploration and validation in a larger cohort of patients with nonmetastatic G/GEJ cancer. ClinicalTrials.gov registration: NCT03448835

    Neoadjuvant nivolumab and relatlimab in locally advanced MMR-deficient colon cancer: a phase 2 trial.

    No full text
    Mismatch repair deficiency (dMMR) is found in approximately 15% of non-metastatic colon cancers (CCs) and is characterized by a defective DNA mismatch repair system, resulting in hypermutated and highly immunogenic tumors. Although patients with dMMR CC have limited benefit from chemotherapy, these tumors have been shown to respond exceptionally well to neoadjuvant anti-PD-1 plus anti-CTLA-4, with high rates of pathologic responses. Here, based on data from melanoma studies, we postulated a high efficacy and favorable toxicity profile of anti-PD-1 plus anti-LAG-3. In the NICHE-3 study, a total of 59 patients with locally advanced dMMR CC were treated with two 4-weekly cycles of nivolumab (480 mg) plus relatlimab (480 mg) before surgery. Pathologic response was observed in 57 of 59 (97%; 95% confidence interval (CI): 88-100%) patients, meeting the primary endpoint. Responses included 54 (92%; 95% CI: 81-97%) major pathologic responses (≤10% residual viable tumor) and 40 (68%; 95% CI: 54-79%) pathologic complete responses. With a median follow-up of 8 months (range, 2-19), one patient had recurrence of disease. The treatment displayed an acceptable safety profile, with all-grade and grade 3-4 immune-related adverse events (irAEs) occurring in 80% and 10% of patients, respectively. The most common irAEs were infusion-related reactions (29%), thyroid dysfunction (22%) and fatigue (20%). In conclusion, our results show that neoadjuvant nivolumab/relatlimab induces high rates of pathologic responses and that further investigation of this treatment in larger studies is warranted. These data add to the body of evidence in support of neoadjuvant immunotherapy regimens in dMMR CC. ClinicalTrials.gov identifier: NCT03026140
    corecore