205 research outputs found

    D-dimer testing, with gender-specific cutoff levels, is of value to assess the individual risk of venous thromboembolic recurrence in non-elderly patients of both genders: a post hoc analysis of the DULCIS study

    Get PDF
    Male patients, especially the young, are at a higher risk of recurrent venous thromboembolism (RVTE) than females. Recent scientific reports show the use of D-dimer does not help predict RVTE risk in males. In the present report, we reviewed the data obtained in the DULCIS study (main report published in Blood 2014), focusing on D-dimer results recorded in non-elderly patients of both genders included in the study, and their relationship with RVTE events occurring during follow-up. Using specifically designed cutoff values for positive/negative interpretation, serial D-dimer measurements (performed during warfarin treatment and up to 3 months after discontinuation of anticoagulation) in 475 patients (males 57.3%) aged 64 65 years were obtained. D-dimer resulted positive in 46.3% and 30.5% of males and females, respectively (p = 0.001). Following management procedure, anticoagulation was stopped in 53.7% of males and 69.5% of females, who had persistently negative D-dimer results. The rate of subsequent recurrent events was 1.7% (95% CI 0.5\u20134.5%) and 0.4% (95% CI 0\u20132.5%) patient-years in males and females, respectively, with upper limits of confidence intervals always below the level of risk considered acceptable by international scientific societies for stopping anticoagulation (< 5%). In conclusion, using sensitive quantitative assays with specifically designed cutoff values and serial measurements during and after discontinuation of anticoagulation, D-dimer testing is useful to predict the risk of RVTE and is of help in deciding the duration of anticoagulation in both male and female adult patients aged up to 65 years

    Euclid: Cosmological forecasts from the void size function

    Get PDF
    The Euclid mission −- with its spectroscopic galaxy survey covering a sky area over 15 000 deg215\,000 \ \mathrm{deg}^2 in the redshift range 0.9<1.8 −0.9<1.8\ - will provide a sample of tens of thousands of cosmic voids. This paper explores for the first time the constraining power of the void size function on the properties of dark energy (DE) from a survey mock catalogue, the official Euclid Flagship simulation. We identify voids in the Flagship light-cone, which closely matches the features of the upcoming Euclid spectroscopic data set. We model the void size function considering a state-of-the art methodology: we rely on the volume conserving (Vdn) model, a modification of the popular Sheth & van de Weygaert model for void number counts, extended by means of a linear function of the large-scale galaxy bias. We find an excellent agreement between model predictions and measured mock void number counts. We compute updated forecasts for the Euclid mission on DE from the void size function and provide reliable void number estimates to serve as a basis for further forecasts of cosmological applications using voids. We analyse two different cosmological models for DE: the first described by a constant DE equation of state parameter, ww, and the second by a dynamic equation of state with coefficients w0w_0 and waw_a. We forecast 1σ1\sigma errors on ww lower than the 10%10\%, and we estimate an expected figure of merit (FoM) for the dynamical DE scenario FoMw0,wa=17\mathrm{FoM}_{w_0,w_a} = 17 when considering only the neutrino mass as additional free parameter of the model. The analysis is based on conservative assumptions to ensure full robustness, and is a pathfinder for future enhancements of the technique. Our results showcase the impressive constraining power of the void size function from the Euclid spectroscopic sample, both as a stand-alone probe, and to be combined with other Euclid cosmological probes...

    Euclid preparation. XXIV. Calibration of the halo mass function in Λ(ν)\Lambda(\nu)CDM cosmologies

    Full text link
    Euclid's photometric galaxy cluster survey has the potential to be a very competitive cosmological probe. The main cosmological probe with observations of clusters is their number count, within which the halo mass function (HMF) is a key theoretical quantity. We present a new calibration of the analytic HMF, at the level of accuracy and precision required for the uncertainty in this quantity to be subdominant with respect to other sources of uncertainty in recovering cosmological parameters from Euclid cluster counts. Our model is calibrated against a suite of N-body simulations using a Bayesian approach taking into account systematic errors arising from numerical effects in the simulation. First, we test the convergence of HMF predictions from different N-body codes, by using initial conditions generated with different orders of Lagrangian Perturbation theory, and adopting different simulation box sizes and mass resolution. Then, we quantify the effect of using different halo-finder algorithms, and how the resulting differences propagate to the cosmological constraints. In order to trace the violation of universality in the HMF, we also analyse simulations based on initial conditions characterised by scale-free power spectra with different spectral indexes, assuming both Einstein--de Sitter and standard Λ\LambdaCDM expansion histories. Based on these results, we construct a fitting function for the HMF that we demonstrate to be sub-percent accurate in reproducing results from 9 different variants of the Λ\LambdaCDM model including massive neutrinos cosmologies. The calibration systematic uncertainty is largely sub-dominant with respect to the expected precision of future mass-observation relations; with the only notable exception of the effect due to the halo finder, that could lead to biased cosmological inference.Comment: 24 pages, 21 figures, 5 tables, 3 appendixes

    Euclid preparation: XXVI. the Euclid Morphology Challenge: Towards structural parameters for billions of galaxies

    Get PDF
    The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline of the Organisational Unit MER of the Euclid Science Ground Segment, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper focusses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes, DeepLeGATo, Galapagos-2, Morfometryka, ProFit and SourceXtractor++, on a sample of about 1.5 million simulated galaxies (350 000 above 5σ) resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic Sérsic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (< 10% scatter on ideal Sérsic simulations) down to an apparent magnitude of about IE = 23 in one component and IE = 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5, respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the official Euclid Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters

    Euclid preparation. XXV. The Euclid Morphology Challenge -- Towards model-fitting photometry for billions of galaxies

    Full text link
    The ESA Euclid mission will provide high-quality imaging for about 1.5 billion galaxies. A software pipeline to automatically process and analyse such a huge amount of data in real time is being developed by the Science Ground Segment of the Euclid Consortium; this pipeline will include a model-fitting algorithm, which will provide photometric and morphological estimates of paramount importance for the core science goals of the mission and for legacy science. The Euclid Morphology Challenge is a comparative investigation of the performance of five model-fitting software packages on simulated Euclid data, aimed at providing the baseline to identify the best suited algorithm to be implemented in the pipeline. In this paper we describe the simulated data set, and we discuss the photometry results. A companion paper (Euclid Collaboration: Bretonni\`ere et al. 2022) is focused on the structural and morphological estimates. We created mock Euclid images simulating five fields of view of 0.48 deg2 each in the IEI_E band of the VIS instrument, each with three realisations of galaxy profiles (single and double S\'ersic, and 'realistic' profiles obtained with a neural network); for one of the fields in the double S\'ersic realisation, we also simulated images for the three near-infrared YEY_E, JEJ_E and HEH_E bands of the NISP-P instrument, and five Rubin/LSST optical complementary bands (uu, gg, rr, ii, and zz). To analyse the results we created diagnostic plots and defined ad-hoc metrics. Five model-fitting software packages (DeepLeGATo, Galapagos-2, Morfometryka, ProFit, and SourceXtractor++) were compared, all typically providing good results. (cut)Comment: 29 pages, 33 figures. Euclid pre-launch key paper. Companion paper: Bretonniere et al. 202

    Euclid preparation XXVI. The Euclid Morphology Challenge. Towards structural parameters for billions of galaxies

    Full text link
    The various Euclid imaging surveys will become a reference for studies of galaxy morphology by delivering imaging over an unprecedented area of 15 000 square degrees with high spatial resolution. In order to understand the capabilities of measuring morphologies from Euclid-detected galaxies and to help implement measurements in the pipeline, we have conducted the Euclid Morphology Challenge, which we present in two papers. While the companion paper by Merlin et al. focuses on the analysis of photometry, this paper assesses the accuracy of the parametric galaxy morphology measurements in imaging predicted from within the Euclid Wide Survey. We evaluate the performance of five state-of-the-art surface-brightness-fitting codes DeepLeGATo, Galapagos-2, Morfometryka, Profit and SourceXtractor++ on a sample of about 1.5 million simulated galaxies resembling reduced observations with the Euclid VIS and NIR instruments. The simulations include analytic S\'ersic profiles with one and two components, as well as more realistic galaxies generated with neural networks. We find that, despite some code-specific differences, all methods tend to achieve reliable structural measurements (10% scatter on ideal S\'ersic simulations) down to an apparent magnitude of about 23 in one component and 21 in two components, which correspond to a signal-to-noise ratio of approximately 1 and 5 respectively. We also show that when tested on non-analytic profiles, the results are typically degraded by a factor of 3, driven by systematics. We conclude that the Euclid official Data Releases will deliver robust structural parameters for at least 400 million galaxies in the Euclid Wide Survey by the end of the mission. We find that a key factor for explaining the different behaviour of the codes at the faint end is the set of adopted priors for the various structural parameters.Comment: Accepted by A&A. 30 pages, 23+6 figures, Euclid pre-launch key paper. Companion paper: Euclid Collaboration XXV: Merlin et al. 2022 Minor corrections after journal revie

    Euclid preparation. XXVI. The Euclid Morphology Challenge: Towards structural parameters for billions of galaxies

    Get PDF

    Euclid preparation. TBD. Forecast impact of super-sample covariance on 3x2pt analysis with Euclid

    Full text link
    Deviations from Gaussianity in the distribution of the fields probed by large-scale structure surveys generate additional terms in the data covariance matrix, increasing the uncertainties in the measurement of the cosmological parameters. Super-sample covariance (SSC) is among the largest of these non-Gaussian contributions, with the potential to significantly degrade constraints on some of the parameters of the cosmological model under study -- especially for weak lensing cosmic shear. We compute and validate the impact of SSC on the forecast uncertainties on the cosmological parameters for the Euclid photometric survey, obtained with a Fisher matrix analysis, both considering the Gaussian covariance alone and adding the SSC term -- computed through the public code PySSC. The photometric probes are considered in isolation and combined in the `3×\times2pt' analysis. We find the SSC impact to be non-negligible -- halving the Figure of Merit of the dark energy parameters (w0w_0, waw_a) in the 3×\times2pt case and substantially increasing the uncertainties on Ωm,0,w0\Omega_{{\rm m},0}, w_0, and σ8\sigma_8 for cosmic shear; photometric galaxy clustering, on the other hand, is less affected due to the lower probe response. The relative impact of SSC does not show significant changes under variations of the redshift binning scheme, while it is smaller for weak lensing when marginalising over the multiplicative shear bias nuisance parameters, which also leads to poorer constraints on the cosmological parameters. Finally, we explore how the use of prior information on the shear and galaxy bias changes the SSC impact. Improving shear bias priors does not have a significant impact, while galaxy bias must be calibrated to sub-percent level to increase the Figure of Merit by the large amount needed to achieve the value when SSC is not included.Comment: 22 pages, 13 figure

    Euclid preparation. XXXI. The effect of the variations in photometric passbands on photometric-redshift accuracy

    Full text link
    The technique of photometric redshifts has become essential for the exploitation of multi-band extragalactic surveys. While the requirements on photo-zs for the study of galaxy evolution mostly pertain to the precision and to the fraction of outliers, the most stringent requirement in their use in cosmology is on the accuracy, with a level of bias at the sub-percent level for the Euclid cosmology mission. A separate, and challenging, calibration process is needed to control the bias at this level of accuracy. The bias in photo-zs has several distinct origins that may not always be easily overcome. We identify here one source of bias linked to the spatial or time variability of the passbands used to determine the photometric colours of galaxies. We first quantified the effect as observed on several well-known photometric cameras, and found in particular that, due to the properties of optical filters, the redshifts of off-axis sources are usually overestimated. We show using simple simulations that the detailed and complex changes in the shape can be mostly ignored and that it is sufficient to know the mean wavelength of the passbands of each photometric observation to correct almost exactly for this bias; the key point is that this mean wavelength is independent of the spectral energy distribution of the source}. We use this property to propose a correction that can be computationally efficiently implemented in some photo-z algorithms, in particular template-fitting. We verified that our algorithm, implemented in the new photo-z code Phosphoros, can effectively reduce the bias in photo-zs on real data using the CFHTLS T007 survey, with an average measured bias Delta z over the redshift range 0.4<z<0.7 decreasing by about 0.02, specifically from Delta z~0.04 to Delta z~0.02 around z=0.5. Our algorithm is also able to produce corrected photometry for other applications.Comment: 19 pages, 13 figures; Accepted for publication in A&

    Euclid preparation. XXXI. Performance assessment of the NISP Red-Grism through spectroscopic simulations for the Wide and Deep surveys

    Full text link
    This work focuses on the pilot run of a simulation campaign aimed at investigating the spectroscopic capabilities of the Euclid Near-Infrared Spectrometer and Photometer (NISP), in terms of continuum and emission line detection in the context of galaxy evolutionary studies. To this purpose we constructed, emulated, and analysed the spectra of 4992 star-forming galaxies at 0.3≤z≤2.50.3 \leq z \leq 2.5 using the NISP pixel-level simulator. We built the spectral library starting from public multi-wavelength galaxy catalogues, with value-added information on spectral energy distribution (SED) fitting results, and from Bruzual and Charlot (2003) stellar population templates. Rest-frame optical and near-IR nebular emission lines were included using empirical and theoretical relations. We inferred the 3.5σ\sigma NISP red grism spectroscopic detection limit of the continuum measured in the HH band for star-forming galaxies with a median disk half-light radius of \ang{;;0.4} at magnitude H=19.5±0.2 H= 19.5\pm0.2\,AB \,mag for the Euclid Wide Survey and at H=20.8±0.6 H = 20.8\pm0.6\,AB \,mag for the Euclid Deep Survey. We found a very good agreement with the red grism emission line detection limit requirement for the Wide and Deep surveys. We characterised the effect of the galaxy shape on the detection capability of the red grism and highlighted the degradation of the quality of the extracted spectra as the disk size increases. In particular, we found that the extracted emission line signal to noise ratio (SNR) drops by ∼ \sim\,45%\% when the disk size ranges from \ang{;;0.25} to \ang{;;1}. These trends lead to a correlation between the emission line SNR and the stellar mass of the galaxy and we demonstrate the effect in a stacking analysis unveiling emission lines otherwise too faint to detect.Comment: 23 pages, 21 figure
    • …
    corecore