49 research outputs found

    Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures

    Get PDF
    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge2Sb2Te5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices. We also show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material GST. We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ~ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Crosstalk between three-dimensional plasmonic slot waveguides

    Full text link
    Abstract: We investigate in detail the crosstalk between three-dimensional plasmonic slot waveguides. We show that, with appropriate design, the crosstalk between such waveguides can be greatly reduced, without significantly affecting their modal size and attenuation length

    Using phase-change materials to switch the direction of reflectionless light propagation in non-PT-symmetric structures

    Get PDF
    We introduce a non-parity-time-symmetric three-layer structure, consisting of a gain medium layer sandwiched between two phase-change medium layers for switching of the direction of reflectionless light propagation. We show that for this structure unidirectional reflectionlessness in the forward direction can be switched to unidirectional reflectionlessness in the backward direction at the optical communication wavelength by switching the phase-change material Ge2Sb2Te5 (GST) from its amorphous to its crystalline phase. We also show that it is the existence of exceptional points for this structure with GST in both its amorphous and crystalline phases which leads to unidirectional reflectionless propagation in the forward direction for GST in its amorphous phase, and in the backward direction for GST in its crystalline phase. Our results could be potentially important for developing a new generation of compact active free-space optical devices. We also show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material GST. We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ~ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Switching photonic nanostructures between cloaking and superscattering regimes using phase-change materials

    Get PDF
    We show that phase-change materials can be used to switch photonic nanostructures between cloaking and superscattering regimes at mid-infrared wavelengths. More specifically, we investigate the scattering properties of subwavelength three-layer cylindrical structures in which the material in the outer shell is the phase-change material Ge_2Sb_2Te_5 (GST). We first show that, when GST is switched between its amorphous and crystalline phases, properly designed electrically small structures can switch between resonant scattering and cloaking invisibility regimes. The contrast ratio between the scattering cross sections of the cloaking invisibility and resonant scattering regimes reaches almost unity. We then also show that larger, moderately small cylindrical structures can be designed to switch between superscattering and cloaking invisibility regimes, when GST is switched between its crystalline and amorphous phases. The contrast ratio between the scattering cross sections of cloaking invisibility and superscattering regimes can be as high as ∼ 93%. Our results could be potentially important for developing a new generation of compact reconfigurable optical devices

    Optical Properties and Behavior of Whispering Gallery Mode Resonators in Complex Microsphere Configurations: Insights for Sensing and Information Processing Applications

    Full text link
    Whispering gallery mode (WGM) resonators are garnering significant attention due to their unique characteristics and remarkable properties. When integrated with optical sensing and processing technology, WGM resonators offer numerous advantages, including compact size, high sensitivity, rapid response, and tunability. This paper comprehensively investigates the optical properties and behavior of WGMs in complex microsphere resonator configurations. The findings underscore the potential of WGMs in sensing applications and their role in advancing future optical information processing. The study explores the impact of configuration, size, excitation, polarization, and coupling effects on the WGMs properties. The paper provides crucial insights and valuable guidance for designing and optimizing microsphere resonator systems, enabling their realization for practical applications.Comment: 11 pages, 13 figure

    Tuning Coherent Radiative Thermal Conductance in Multilayer Photonic Crystals

    Full text link
    We consider coherent radiative thermal conductance of a multilayer photonic crystal. The crystal consists of alternating layers of lossless dielectric slabs and vacuum, where heat is conducted only through photons. We show that such a structure can have thermal conductance below vacuum over the entire high temperature range, due to the presence of partial band gap in most of the frequency range, as well as the suppression of evanescent tunneling between slabs at higher frequencies. The thermal conductance of this structure is highly tunable by varying the thickness of the vacuum layers.Comment: add a paragraph at the end on the applicability of the mechanism to silicon; accepted by Applied Physics Letters (2008

    Optimization of quantum interferometric metrological sensors in the presence of photon loss

    Get PDF
    We optimize two-mode entangled number states of light in the presence of loss in order to maximize the extraction of the available phase information in an interferometer. Our approach optimizes over the entire available input Hilbert space with no constraints, other than fixed total initial photon number. We optimize to maximize the Fisher information, which is equivalent to minimizing the phase uncertainty. We find that in the limit of zero loss, the optimal state is the maximally path-entangled (so-called N00N) state, for small loss, the optimal state gradually deviates from the N00N state, and in the limit of large loss, the optimal state converges to a generalized two-mode coherent state, with a finite total number of photons. The results provide a general protocol for optimizing the performance of a quantum optical interferometer in the presence of photon loss, with applications to quantum imaging, metrology, sensing, and information processing. © 2009 The American Physical Society
    corecore