1 research outputs found
Exciton Dynamics in MoS<sub>2</sub>‑Pentacene and WSe<sub>2</sub>‑Pentacene Heterojunctions
We measured the exciton dynamics in van der Waals heterojunctions
of transition metal dichalcogenides (TMDCs) and organic semiconductors
(OSs). TMDCs and OSs are semiconducting materials with rich and highly
diverse optical and electronic properties. Their heterostructures,
exhibiting van der Waals bonding at their interfaces, can be utilized
in the field of optoelectronics and photovoltaics. Two types of heterojunctions,
MoS2-pentacene and WSe2-pentacene, were prepared
by layer transfer of 20 nm pentacene thin films as well as MoS2 and WSe2 monolayer crystals onto Au surfaces.
The samples were studied by means of transient absorption spectroscopy
in the reflectance mode. We found that A-exciton decay by hole transfer
from MoS2 to pentacene occurs with a characteristic time
of 21 ± 3 ps. This is slow compared to previously reported hole
transfer times of 6.7 ps in MoS2-pentacene junctions formed
by vapor deposition of pentacene molecules onto MoS2 on
SiO2. The B-exciton decay in WSe2 shows faster
hole transfer rates for WSe2-pentacene heterojunctions,
with a characteristic time of 7 ± 1 ps. The A-exciton in WSe2 also decays faster due to the presence of a pentacene overlayer;
however, fitting the decay traces did not allow for the unambiguous
assignment of the associated decay time. Our work provides important
insights into excitonic dynamics in the growing field of TMDC-OS heterojunctions