4 research outputs found
Gamma-Ray Burst observations by the high-energy charged particle detector on board the CSES-01 satellite between 2019 and 2021
In this paper we report the detection of five strong Gamma-Ray Bursts (GRBs)
by the High-Energy Particle Detector (HEPD-01) mounted on board the China
Seismo-Electromagnetic Satellite (CSES-01), operational since 2018 on a
Sun-synchronous polar orbit at a 507 km altitude and 97
inclination. HEPD-01 was designed to detect high-energy electrons in the energy
range 3 - 100 MeV, protons in the range 30 - 300 MeV, and light nuclei in the
range 30 - 300 MeV/n. Nonetheless, Monte Carlo simulations have shown HEPD-01
is sensitive to gamma-ray photons in the energy range 300 keV - 50 MeV, even if
with a moderate effective area above 5 MeV. A dedicated time correlation
analysis between GRBs reported in literature and signals from a set of HEPD-01
trigger configuration masks has confirmed the anticipated detector sensitivity
to high-energy photons. A comparison between the simultaneous time profiles of
HEPD-01 electron fluxes and photons from GRB190114C, GRB190305A, GRB190928A,
GRB200826B and GRB211211A has shown a remarkable similarity, in spite of the
different energy ranges. The high-energy response, with peak sensitivity at
about 2 MeV, and moderate effective area of the detector in the actual flight
configuration explain why these five GRBs, characterised by a fluence above
3 10 erg cm in the energy interval 300 keV - 50
MeV, have been detected.Comment: Accepted for publication in The Astrophysical Journal (ApJ
The Low-Energy Module (LEM): Development of a CubeSat Spectrometer for Sub-MeV Particles and Gamma-Ray Burst Detection
An accurate flux measurement of low-energy charged particles trapped in the magnetosphere is necessary for space weather characterization and to study the coupling between the lithosphere and magnetosphere, which allows for the investigation of the correlations between seismic events and particle precipitation from Van Allen belts. In this work, the project of a CubeSat space spectrometer, the Low-Energy Module (LEM), is shown. The detector will be able to perform an event-based measurement of the energy, arrival direction, and composition of low-energy charged particles down to 0.1 MeV. Moreover, thanks to a CdZnTe mini-calorimeter, the LEM spectrometer also allows for photon detection in the sub-MeV range, joining the quest for the investigation of the nature of Gamma-ray bursts. The particle identification of the LEM relies on the ÎEâE technique performed by thin silicon detectors. This multipurpose spectrometer will fit within a 10 Ă 10 Ă 10 cm3 CubeSat frame, and it will be constructed as a joint project between the University of Trento, FBK, and INFN-TIFPA. To fulfil the size and mass requirements, an innovative approach, based on active particle collimation, was designed for the LEM; this avoids the heavy/bulky passive collimators of previous space detectors. In this paper, we will present the LEM geometry, its detection concept, and the results from the developed GEANT4 simulation
Evidence of an upper ionospheric electric field perturbation correlated with a gamma ray burst
Abstract Earthâs atmosphere, whose ionization stability plays a fundamental role for the evolution and endurance of life, is exposed to the effect of cosmic explosions producing high energy Gamma-ray-bursts. Being able to abruptly increase the atmospheric ionization, they might deplete stratospheric ozone on a global scale. During the last decades, an average of more than one Gamma-ray-burst per day were recorded. Nevertheless, measurable effects on the ionosphere were rarely observed, in any case on its bottom-side (from about 60 km up to about 350 km of altitude). Here, we report evidence of an intense top-side (about 500 km) ionospheric perturbation induced by significant sudden ionospheric disturbance, and a large variation of the ionospheric electric field at 500 km, which are both correlated with the October 9, 2022 Gamma-ray-burst (GRB221009A)